
IP Layer Input Packet Processing

The receive functions of the IP layer include:

IP header validation;
IP header option processing;
Routing of the input packet to the proper transport.

However, to accomplish this limited mission a surprisingly large amount of processing is
performed. A significant amount of this processing involves managing the layout and ownership
of the sk_buff. This the primary concern of the ip_rcv() function which is defined in
net/ipv4/ip_input.c.

 380 /*
 381 * Main IP Receive routine.
 382 */
 383 int ip_rcv(struct sk_buff *skb, struct net_device

*dev, struct packet_type *pt)
 384 {
 385 struct iphdr *iph;

When the interface is in promiscuous mode, any sk_buff, not directed to this host, is discarded
without any processing. The packet type was set to PACKET_OTHERHOST by net_rx_action()
if the packet was neither broadcast nor multicast and the destination MAC address was not the
same as the MAC address carried by the struct netdevice representing the interface upon which
the packet arrived. Operating an in interface in promiscuous mode on a true broadcast medium
is the only legitimate cause of this situation.

 387 /* When the interface is in promisc. mode,
drop all the crap that it receives, do
not try to analyse it.

 389 */
 390 if (skb−>pkt_type == PACKET_OTHERHOST)
 391 goto drop;
 392

These are the counters that SNMP uses.

 393 IP_INC_STATS_BH(IpInReceives);

1

Dealing with shared skb’s

The skb_share_check() function determines if the sk_buff is shared. If so, the sk_buff is cloned,
the original is freed, and a pointer to the clone is returned. If it is not shared, a pointer to the
original is returned. If the sk_buff is shared, but the attempt to clone it fails, NULL is returned.
Buffers may be shared at this point if multiple handlers for a specific packet type have been
registered and have indicated that they understand shared skb’s. The fact that the shared skb’s
become unshared at such a low level in the stack calls their usefulness into some question.

 395 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
 396 goto out;

The skb_share_check() function, defined in include/linux/skbuff.h, determines if the buffer is
shared, and if so attempts to clone it. Freeing the original buffer decrements the use count, but
actually frees the buffer only when the use count becomes 0. A cloned buffer necessarily has a
use count exceeding one, and so call to kfree_skb() simply decrements it.

 343 static inline struct sk_buff *skb_share_check(struct

sk_buff *skb, int pri)
 344 {
 345 if (skb_shared(skb)) {
 346 struct sk_buff *nskb;
 347 nskb = skb_clone(skb, pri);
 348 kfree_skb(skb);
 349 return nskb;
 350 }
 351 return skb;
 352 }

The skb_shared() inline function returns TRUE if the number of users of the buffer exceeds 1.

 324 static inline int skb_shared(struct sk_buff *skb)
 325 {
 326 return (atomic_read(&skb−>users) != 1);
 327 }

2

The skb_clone() function is defined in net/core/skbuff.c. It duplicates the struct sk_buff header,
but the data portion remains shared. The process of cloning causes the reference count of the
original to be decremented and the use count of the clone to be set to one. If memory allocation
fails, NULL is returned . The ownership of the new buffer is not assigned to any struct sock. If
this function is called from an interrupt handler gfp_mask must be GFP_ATOMIC.

 347 struct sk_buff *skb_clone(struct sk_buff *skb, int

gfp_mask)
 348 {
 349 struct sk_buff *n;
 350

Each CPU maintains a pool of free struct sk_buff’ headers. If the pool is empty then it is
necessary to allocate from the cache managed by the slab allocator.

 351 n = skb_head_from_pool();
 352 if (!n) {
 353 n = kmem_cache_alloc(skbuff_head_cache,

gfp_mask);
 354 if (!n)
 355 return NULL;
 356 }

The skb_head_from_pool() function detaches and returns the first sk_buff header in the list or
returns NULL if the list is empty.

 112 static __inline__ struct sk_buff
*skb_head_from_pool(void)

 113 {
 114 struct sk_buff_head *list =

&skb_head_pool[smp_processor_id()].list;

 116 if (skb_queue_len(list)) {
 117 struct sk_buff *skb;
 118 unsigned long flags;
 119
 120 local_irq_save(flags);
 121 skb = __skb_dequeue(list);
 122 local_irq_restore(flags);
 123 return skb;
 124 }
 125 return NULL;
 126 }

3

Instead of using memcpy(), skb_clone() copies a single structure element at a time.

 358 #define C(x) n−>x = skb−>x
 359
 360 n−>next = n−>prev = NULL;
 361 n−>list = NULL;
 362 n−>sk = NULL;
 363 C(stamp);
 364 C(dev);
 365 C(h);
 366 C(nh);
 367 C(mac);
 368 C(dst);
 369 dst_clone(n−>dst);
 370 memcpy(n−>cb, skb−>cb, sizeof(skb−>cb));
 371 C(len);
 372 C(data_len);
 373 C(csum);
 374 n−>cloned = 1;
 375 C(pkt_type);
 376 C(ip_summed);
 377 C(priority);
 378 atomic_set(&n−>users, 1);
 379 C(protocol);
 380 C(security);
 381 C(truesize);
 382 C(head);
 383 C(data);
 384 C(tail);
 385 C(end);

4

 386 n−>destructor = NULL;
 387 #ifdef CONFIG_NETFILTER
 388 C(nfmark);
 389 C(nfcache);
 390 C(nfct);
 391 #ifdef CONFIG_NETFILTER_DEBUG
 392 C(nf_debug);
 393 #endif
 394 #endif /*CONFIG_NETFILTER*/
 395 #if defined(CONFIG_HIPPI)
 396 C(private);
 397 #endif
 398 #ifdef CONFIG_NET_SCHED
 399 C(tc_index);
 400 #endif
 401
 402 atomic_inc(&(skb_shinfo(skb)−>dataref));
 403 skb−>cloned = 1;
 404 #ifdef CONFIG_NETFILTER
 405 nf_conntrack_get(skb−>nfct);
 406 #endif

Finally, skb_clone() returns a pointer to the cloned sk_buff.

 407 return n;
 408 }

5

IP Header Validation..

Back in ip_rcv, the pskb_may_pull() is called. It ensures that IP header is entirely present in
kmalloc’d area. It moves (pulls) the IP header from unmapped page fragments into the kmalloc’d
area if required. We are not aware of any device drivers that create this ugly situation, but
rectifying it requires an unbelievably tedious 10 pages of code which will not be examined here.

 398 if (!pskb_may_pull(skb, sizeof(struct iphdr)))
 399 goto inhdr_error;

After ensuring that IP header is properly resident in the kmalloc’d area, IP header validation is
performed. Validation includes ensuring that:

the length of the datagram is at least the 20 byte length of an IP header;
the IP version is 4;
the checksum is satisfactory;
the packet length reported in the IP header is consistent with the length reported in the
struct skbuff.

 401 iph = skb−>nh.iph;
 402

Verify that header length and version number are satisfactory.

 414 if (iph−>ihl < 5 || iph−>version != 4)
 415 goto inhdr_error;

Pull IP any header options into kmalloc’d area of the sk_buff. This call is a return visit to the 10
pages of torture previously referenced.

 417 if (!pskb_may_pull(skb, iph−>ihl*4))
 418 goto inhdr_error;

Verify the IP header checksum using ip_fast_csum . The header pointer must be reloaded here
because the pskb_may_pull() operation may have rebuilt the whole skb.

 420 iph = skb−>nh.iph;
 421
 422 if (ip_fast_csum((u8 *)iph, iph−>ihl) != 0)
 423 goto inhdr_error;

6

Verify that the length reported in iph−>totlen is acceptable. If the length reported in
iph−>tot_len is greater than that reported in skb−>len, or if it is less than the length of IP header,
then there is a definite problem.

 425 {
 426 u32 len = ntohs(iph−>tot_len);
 427 if (skb−>len < len || len < (iph−>ihl<<2))
 428 goto inhdr_error;

However, it is legal for skb−>len to exceed iph−>tot_len. For example, it is typical for ethernet
drivers to allocate buffers of MTU size. When this occurs, skb−>len is adjusted downward to
become consistent with iph−>tot_len.

 430 /* Our transport medium may have padded the

buffer out. Now we know it is IP we can
trim to the true length of the frame.

 Note this now means skb−>len holds
ntohs(iph−>tot_len).

 433 */
 434 if (skb−>len > len) {
 435 __pskb_trim(skb, len);

skb−>ip_summed check? ... why only when sk buff is trimmed?? .. is it because we trimmed
it...and checksum is not valid any more ..

 436 if (skb−>ip_summed == CHECKSUM_HW)
 437 skb−>ip_summed = CHECKSUM_NONE;
 438 }
 439 }
 440

Finally, the packet is passed to the netfilter facilty. The "okfn", ip_rcv_finish, is called if the
netfilter finds the packet to be acceptable.

 441 return NF_HOOK(PF_INET, NF_IP_PRE_ROUTING, skb,
 442 dev, NULL, ip_rcv_finish);

In the event of any error, the sk_buff is discarded.

 444 inhdr_error:
 445 IP_INC_STATS_BH(IpInHdrErrors);
 446 drop:
 447 kfree_skb(skb);
 448 out:
 449 return NET_RX_DROP;
 450 }

7

Trimming the skb to match the header length

__pskb_trim is defined in include/linux/skbuff.h.

 946 static inline int __pskb_trim(struct sk_buff *skb,
unsigned int len)

 947 {

If there is no data in unmapped page fragments, the trim operation, simply updates the values of
the tail and len members. Otherwise ___pskb_trim gets called.

 948 if (!skb−>data_len) {
 949 skb−>len = len;
 950 skb−>tail = skb−>data+len;
 951 return 0;
 952 } else {
 953 return ___pskb_trim(skb, len, 1);
 954 }
 955 }

The real trim function is ___pskb_trim() function which is defined in net/core/skbuff.c. It gets
really ugly really fast because it must deal with unmapped pages and buffer chains.

/* Trims skb to length len. It can change skb
pointers if "realloc" is 1. If realloc == 0 and
trimming is impossible without change of data,
it is BUG().

 */

 739 int ___pskb_trim(struct sk_buff *skb, unsigned int

len, int realloc)
 740 {

The value of offset denotes length of the kmalloc’d component of the sk_buff.

 741 int offset = skb_headlen(skb);
 742 int nfrags = skb_shinfo(skb)−>nr_frags;
 743 int i;
 744

8

This loop processes any unmapped page fragments that may be associated with the buffer.

 745 for (i=0; i<nfrags; i++) {

Add the fragment size to offset and compare it against the length of the IP packet. If end is
greater than len, then this fragment needs to be trimmed. In this case, if the sk_buff is a clone, its
header and skb_shared_info structure are reallocated here. What is the role of pskb_expand_head.

 746 int end = offset + skb_shinfo(skb)
−>frags[i].size;

 747 if (end > len) {
 748 if (skb_cloned(skb)) {
 749 if (!realloc)
 750 BUG();
 751 if (!pskb_expand_head(skb, 0, 0,

GFP_ATOMIC))
 752 return −ENOMEM;
 753 }

If the offset of the start of the fragment lies beyond the end of the data, the fragment is freed and
number of fragments decremented by one. Otherwise, the fragment size is decremented so that its
length is consistent with the size of the packet.

 754 if (len <= offset) {
 755 put_page(skb_shinfo(skb)

−>frags[i].page);
 756 skb_shinfo(skb)−>nr_frags−−;
 757 } else {
 758 skb_shinfo(skb)−>frags[i].size

 = len−offset;
 759 }
 760 }

Update offset so that it reflects the offset to the start position of the next fragment.

 761 offset = end;
 762 }

9

After processing the unmapped page fragments, some additional adjustments may be necessary.
Here len holds the target trimmed length and offset holds the offset to the first byte of data beyond
the unmapped page fragments. Since skb−>len is greater than len it is not clear how offset can be
smaller than len.

 764 if (offset < len) {
 765 skb−>data_len −= skb−>len − len;
 766 skb−>len = len;
 767 }

If len <= skb_headlen(skb) then all of the data now resides in the kmalloc’ed portion of the
sk_buff. If the sk_buff is not cloned then presumably skb_drop_fraglist() frees the now unused
elements.

else {
 768 if (len <= skb_headlen(skb)) {
 769 skb−>len = len;
 770 skb−>data_len = 0;
 771 skb−>tail = skb−>data + len;
 772 if (skb_shinfo(skb)−>frag_list &&

!skb_cloned(skb))
 773 skb_drop_fraglist(skb);
 774 }

In this case the offset is greater than or equal to len. The trimming operation is achieved by
decrementing skb−>data_len by the amount trimmed and settting skb−>len to the target length.

else {
 775 skb−>data_len −= skb−>len − len;
 776 skb−>len = len;
 777 }
 778 }
 779
 780 return 0;
 781 }

10

