
IP Layer Input Packet Processing (continuation)

The ip_rcv_finish() function is defined in net/ipv4/ip_input.c and is indirectly called from ip_rcv()
as an okfn() passed through the netfilter mechanism. Its primary missions are to call
ip_route_input() which determines the next function to handle the sk_buff and to compile any IP
header options into the sk_buff’s control buffer.

 309 static inline int ip_rcv_finish(struct sk_buff *skb)
 310 {
 311 struct net_device *dev = skb−>dev;
 312 struct iphdr *iph = skb−>nh.iph;

The value of skb−>dst will typically (always?) be NULL if the packet was received from the
outside world. When this is the case, ip_route_input() is called to set skb−>dst to a destination
entry that describes the next course of action. The address of the next function to handle the
sk_buff is selected from.

 ip_forward() Forward to destination not on this host.

ip_local_deliver() Process and deliver packet to transport layer .
ip_error() An error occurred somewhere.

 314 /* Initialise the virtual path cache for the

packet. It describes how the packet travels
inside Linux networking.

 317 */
 318 if (skb−>dst == NULL) {
 319 if (ip_route_input(skb, iph−>daddr,

iph−>saddr, iph−>tos, dev))
 320 goto drop;
 321 }

 323 #ifdef CONFIG_NET_CLS_ROUTE
 324 if (skb−>dst−>tclassid) {
 325 struct ip_rt_acct *st = ip_rt_acct +

256 * smp_processor_id();
 326 u32 idx = skb−>dst−>tclassid;
 327 st[idx&0xFF].o_packets++;
 328 st[idx&0xFF].o_bytes+=skb−>len;
 329 st[(idx>>16)&0xFF].i_packets++;
 330 st[(idx>>16)&0xFF].i_bytes+=skb−>len;
 331 }
 332 #endif

1

Check for presence of IP options. The only ones that appear to impact processing here are strict
and loose source routing.

 334 if (iph−>ihl > 5) {
 335 struct ip_options *opt;
 336
 337 /*It looks as overkill, because not all
 338 IP options require packet mangling.
 339 But it is the easiest for now, especially taking into

account thatcombination of IP options and running
sniffer is extremely rare condition.

 342 −−ANK (980813)
 343 */

The headroom of an skb is defined to be the difference between the data and head pointers.

 885 static inline int skb_headroom(const struct sk_buff *skb)
 886 {
 887 return skb−>data − skb−>head;
 888 }

 345 if (skb_cow(skb, skb_headroom(skb)))
 346 goto drop;

The skb_cow() function is defined in include/linux/skbuff.h. It ensures that the headroom of the
sk_buff is at least 16 bytes. The sk_buff is reallocated if its headroom is inadequate of small or if it
has a clone. Recall that dev_alloc_skb() used skb_reserve() to establish a 16 byte headroom when
the packet was allocated. Thus for the ‘‘normal’’ case the value of delta will be 0 here.

 1071 static inline int
 1072 skb_cow(struct sk_buff *skb, unsigned int headroom)
 1073 {
 1074 int delta = (headroom > 16 ? headroom : 16)

− skb_headroom(skb);
 1075
 1076 if (delta < 0)
 1077 delta = 0;

2

When the headroom is small or the sk_buff is cloned, reallocate the sk_buff with specified headroom
size.

 1079 if (delta || skb_cloned(skb))
 1080 return pskb_expand_head(skb,

(delta+15) & ~15, 0, GFP_ATOMIC);
 1081 return 0;
 1082 }

The value of iph is re−initialized as skb_cow() may have reallocated the sk_buff header.

 347 iph = skb−>nh.iph;
 348
 349 skb−>ip_summed = 0;

The ip_options_compile() function compiles IP options into a somewhat structured representation
that is described by struct inet_skb_parm and resides in the control buffer portion of the struct
sk_buff. The control buffer (skb−>cb) is a buffer of 48 bytes, into which private variables may be
temporarily saved by any layer of networking stack.

 350 if (ip_options_compile(NULL, skb))
 351 goto inhdr_error;

The IPCB macro, defined in include/net/ip.h, casts a pointer to the control buffer to type struct
inet_skb_parm

 58 #define IPCB(skb) ((struct inet_skb_parm*)((skb)−>cb))

3

The local opt pointer of struct ip_options type is set to point to the options that have been compiled
into the control buffer. When source route options are present in the IP options, opt−>srr is not
NULL.

 353 opt = &(IPCB(skb)−>opt);
 354 if (opt−>srr) {
 355 struct in_device *in_dev =

in_dev_get(dev);

The test for the presence of the in_dev structure is a bit odd. One would think its presence should be
mandatory, but processing continues without it if it is not present.

 356 if (in_dev) {

IN_DEV_SOURCE_ROUTE() is a macro that is defined in include/linux/inetdevice.h. It returns true
if both IP and the input device were configured to allow strict? source routing. If source routing is
not allowed, the packet must be dropped.

 42 #define IN_DEV_SOURCE_ROUTE(in_dev)
(ipv4_devconf.accept_source_route &&
(in_dev)−>cnf.accept_source_route)

The term martians is commonly used in Linux to refer to unresolvable addresses.
IN_DEV_LOG_MARTIANS() returns true if IP or the device were configured to log source and
destination addresses of packets associated with failed source routes.

 45 #define IN_DEV_LOG_MARTIANS(in_dev)
(ipv4_devconf.log_martians ||(in_dev)−>cnf.log_martians)

 357 if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
 358 if(IN_DEV_LOG_MARTIANS(in_dev)

&& net_ratelimit())
 359 printk(KERN_INFO "source

route option %u.%u.%u.%u
−> %u.%u.%u.%u\n",

 360 NIPQUAD(iph−>saddr),
NIPQUAD(iph−>daddr));

 361 in_dev_put(in_dev);
 362 goto drop;
 363 }
 364 in_dev_put(in_dev);
 365 }

Arrival here indicates that there are source routing options and that they are allowed to be processed.

 366 if (ip_options_rcv_srr(skb))
 367 goto drop;
 368 }
 369 }

4

Processing of source routing options

The ip_options_rcv_srr() function, defined in net/ipv4/ip_options.c verifies that the option data is
syntactically sensible, extracts the next hop address from the options, calls ip_route_input() to
determine if it is reachable, and returns 0 on success.

 566 int ip_options_rcv_srr(struct sk_buff *skb)
 567 {
 568 struct ip_options *opt = &(IPCB(skb)−>opt);
 569 int srrspace, srrptr;
 570 u32 nexthop;
 571 struct iphdr *iph = skb−>nh.iph;
 572 unsigned char * optptr = skb−>nh.raw + opt−>srr;
 573 struct rtable *rt = (struct rtable*)skb−>dst;
 574 struct rtable *rt2;
 575 int err;

If no source route option is specified, opt−>srr is not set and success is returned. Since this was
previously checked for non−zero, there must be another caller of this function out there somewhere!

 577 if (!opt−>srr)
 578 return 0;

PACKET_HOST is a packet type defined in include/linux/if_packet.h. It is the default type that is
assigned when an sk_buff is allocated. For packet types other than PACKET_HOST, we return
−EINVAL.

 24 #define PACKET_HOST 0 /* To us */
 25 #define PACKET_BROADCAST 1 /* To all */

 580 if (skb−>pkt_type != PACKET_HOST)
 581 return −EINVAL;

When the destination is gatewayed/direct route (i.e. not RT_LOCAL) and strict source routing
needs to be enforced, this is an error because this host must own the current destination. An ICMP
message is sent and −EINVAL is returned. If it is a loose source route, and the route type is
RT_UNICAST then this host wasn’t in the list and the packet is just forwarded normally.

 582 if (rt−>rt_type == RTN_UNICAST) {
 583 if (!opt−>is_strictroute)
 584 return 0;
 585 icmp_send(skb, ICMP_PARAMETERPROB, 0,

htonl(16<<24));
 586 return −EINVAL;
 587 }

For route types other than RTN_LOCAL, we return −EINVAL.

 588 if (rt−>rt_type != RTN_LOCAL)
 589 return −EINVAL;

5

Updating the next hop address

Arrival here implies that source routing is in effect and that we own the current destination address.
In that case the destination address must be put back in the to list and the next element of the list
made the destination.. unless of course the end of the route is us. The for loop is apparently
handling the case in which a source route that contains multiple interfaces owned by us is specified!

 591 for (srrptr=optptr[2], srrspace = optptr[1];
srrptr <= srrspace; srrptr += 4) {

 592 if (srrptr + 3 > srrspace) {
 593 icmp_send(skb, ICMP_PARAMETERPROB, 0,

htonl((opt−>srr+2)<<24));
 594 return −EINVAL;
 595 }
 596 memcpy(&nexthop, &optptr[srrptr−1], 4);
 598 rt = (struct rtable*)skb−>dst;
 599 skb−>dst = NULL;
 600 err = ip_route_input(skb, nexthop,

iph−>saddr, iph−>tos, skb−>dev);
 601 rt2 = (struct rtable*)skb−>dst;

Route to next hop must be either RTN_UNICAST or RTN_LOCAL.

 602 if (err || (rt2−>rt_type != RTN_UNICAST &&
rt2−>rt_type != RTN_LOCAL)) {

 603 ip_rt_put(rt2);
 604 skb−>dst = &rt−>u.dst;
 605 return −EINVAL;
 606 }
 607 ip_rt_put(rt);

When route to next hop is of type RTN_UNICAST, we exit the loop. Note that "skb−>dst" now
points to routing cache entry with next hop address as destination.

 608 if (rt2−>rt_type != RTN_LOCAL)
 609 break;

We reach here if next hop address is strangely our own address (since route type is RTN_LOCAL).
In that case, we copy next hop address into destination address field of IP packet.

 610 /* Superfast 8) loopback forward */
 611 memcpy(&iph−>daddr, &optptr[srrptr−1], 4);
 612 opt−>is_changed = 1;
 613 }

6

 614 if (srrptr <= srrspace) {
 615 opt−>srr_is_hit = 1;
 616 opt−>is_changed = 1;
 617 }
 618 return 0;
 619 }

Back in ip_rcv_finish, after processing IP options, input function of destination entry is triggered.
Recall that skb−>dst was set by ip_route_input. Note that the input function is one of the three
below:

ip_forward: Forwarded to destination.
ip_local_deliver: Process and deliver packet to transport layer.
ip_error: An error occurred somewhere. Packet is passed to this

function which might send an ICMP message.

 371 return skb−>dst−>input(skb);

In case of any error, the sk_buff is discarded.

 373 inhdr_error:
 374 IP_INC_STATS_BH(IpInHdrErrors);
 375 drop:
 376 kfree_skb(skb);
 377 return NET_RX_DROP;
 378 }

7

Determining the next hop with ip_route_input()

The ip_route_input() function is defined in net/ipv4/route.c. If first tries to find a suitable
destination structure in the route cache and if that fails it invokes ip_route_input_slow() to perform a
FIB lookup.

 1622 int ip_route_input(struct sk_buff *skb, u32 daddr, u32
saddr, u8 tos, struct net_device *dev)

 1624 {
 1625 struct rtable * rth;
 1626 unsigned hash;
 1627 int iif = dev−>ifindex;
 1628
 1629 tos &= IPTOS_RT_MASK;

The rt_hash_code() function returns the hash code that is used as an index into the route cache.

 1630 hash = rt_hash_code(daddr, saddr ^ (iif << 5), tos);

The hash function is implemented by the inline function rt_hash_code(). The code is derived from
the source and destination addresses, the input interface index and the type of service.

 203 static __inline__ unsigned rt_hash_code(u32 daddr,
 u32 saddr, u8 tos)
 204 {
 205 unsigned hash = ((daddr & 0xF0F0F0F0) >> 4) |
 206 ((daddr & 0x0F0F0F0F) << 4);
 207 hash ^= saddr ^ tos;
 208 hash ^= (hash >> 16);
 209 return (hash ^ (hash >> 8)) & rt_hash_mask;
 210 }

8

The hash code returned by the above function is used by ip_route_input to identify the proper chain
in the rt_hash_table structure. First the chain is locked, and then all elements are examined in a
search for an entry having the required attributes. CONFIG_IP_ROUTE_FWMARK is an option
to specify different routes for packets with different (netfilter) mark values.

 1632 read_lock(&rt_hash_table[hash].lock);
 1633 for (rth = rt_hash_table[hash].chain; rth; rth =

rth−>u.rt_next) {
 1634 if (rth−>key.dst == daddr &&
 1635 rth−>key.src == saddr &&
 1636 rth−>key.iif == iif &&
 1637 rth−>key.oif == 0 &&
 1638 #ifdef CONFIG_IP_ROUTE_FWMARK
 1639 rth−>key.fwmark == skb−>nfmark &&
 1640 #endif
 1641 rth−>key.tos == tos) {

On finding a match, the time of last use for this entry is updated. The dst_hold() function simply
increments the reference count (atomic_inc(&dst−>__refcnt)) The distinction between __use and
__refcnt is not clear at present.

 1642 rth−>u.dst.lastuse = jiffies;
 1643 dst_hold(&rth−>u.dst);
 1644 rth−>u.dst.__use++;
 1645 rt_cache_stat[smp_processor_id()].in_hit++;
 1646 read_unlock(&rt_hash_table[hash].lock);

Set skb−>dst to this entry and return.

 1647 skb−>dst = (struct dst_entry*)rth;
 1648 return 0;
 1649 }
 1650 }

Falling out of the loop means a route couldn’t be found in the route cache.

 1651 read_unlock(&rt_hash_table[hash].lock);

9

Reaching this point in ip_route_input() implies that a suitable routing element was not present in the
route cache. If the destination is a multicast address, it is necessary to determine whether the
interface on which this packet was received belongs to this multicast group. The comment below
describes how multicast routing is complicated by broken or deficient multicast filters on many
ethernet cards.

 1653 /* Multicast recognition logic is moved from route

cache to here. The problem was that too many
Ethernet cards have broken/missing hardware
multicast filters :−(As result the host on
multicasting network acquires a lot of useless route
cache entries, sort of SDR messages from all the
world. Now we try to get rid of them. Really,
provided software IP multicast filter is organized
reasonably (at least, hashed), it does not result in
a slowdown comparing with route cache reject
entries. Note, that multicast routers are not
affected, because route cache entry is created
eventually.

 1663 */
 1664 if (MULTICAST(daddr)) {
 1665 struct in_device *in_dev;
 1666
 1667 read_lock(&inetdev_lock);

10

Each net_device that supports IP traffic must also an associate struct in_device. The __in_dev_get()
function returns its address.

 1668 if ((in_dev = __in_dev_get(dev)) != NULL) {

The ip_check_mc() function, defined in net/ipv4/igmp.c, returns true if the interface is a member of
the multicast group identified by daddr.

 1669 int our = ip_check_mc(in_dev, daddr);

The mc_list element of struct in_device points to a linked list of the ip_mc_list structures that
describes the multicast groups of which the network interface is a member.1

 761 int ip_check_mc(struct in_device *in_dev, u32 mc_addr)
 762 {
 763 struct ip_mc_list *im;
 765 read_lock(&in_dev−>lock);
 766 for (im=in_dev−>mc_list; im; im=im−>next) {
 767 if (im−>multiaddr == mc_addr) {
 768 read_unlock(&in_dev−>lock);
 769 return 1;
 770 }
 771 }
 772 read_unlock(&in_dev−>lock);
 773 return 0;
 774 }

1 http://www.tldp.org/HOWTO/Multicast−HOWTO−7.html

11

Back in ip_route_input(), if the the destination was a multicast address and the interface was a
member of the associated group and several configuration constraints are met, then the packet is sent
to ip_route_input_mc() for routing.CONFIG_IP_MROUTE is an option to allow routing of IP
packets that have several destination addresses. IN_DEV_MFORWARD is a macro defined in
include/linux/inetdevice.h.

 40 #define IN_DEV_MFORWARD(in_dev)(ipv4_devconf.mc_forwarding
 && (in_dev)−>cnf.mc_forwarding)

 1670 if (our
 1671 #ifdef CONFIG_IP_MROUTE
 1672 || (!LOCAL_MCAST(daddr)

&& IN_DEV_MFORWARD(in_dev))
 1673 #endif
 1674){
 1675 read_unlock(&inetdev_lock);
 1676 return ip_route_input_mc(skb,

daddr, saddr,
 1677 tos, dev, our);
 1678 }
 1679 }
 1680 read_unlock(&inetdev_lock);
 1681 return −EINVAL;
 1682 }

Reaching this point implies the packet was routeable neither through the routing cache nor as a
multicast. The ip_route_input_slow() function must be called to try to route via the FIB.

 1683 return ip_route_input_slow(skb, daddr, saddr, tos, dev);
 1684 }

12

