
Input Routing Via the FIB

When a suitable route cache entry is not found, the ip_route_input_slow() function, defined in
net/ipv4/route.c, attempts to find a FIB entry that can be used. If it succeeds, a new route cache entry
will have been created. The organization of this function bears resememblence to some Fortran code
written by the writer of these notes in the mid 1960’s.

/*
NOTE. We drop all the packets that has local source
addresses because every properly looped back packet must
have correct destination already attached by output
routine.

Such approach solves two big problems:
1. Not simplex devices are handled properly.
2. IP spoofing attempts are filtered with 100% of
guarantee.

*/

 1312 int ip_route_input_slow(struct sk_buff *skb, u32
daddr, u32 saddr, u8 tos, struct net_device *dev)

 1314 {
 1315 struct rt_key key;
 1316 struct fib_result res;
 1317 struct in_device *in_dev = in_dev_get(dev);
 1318 struct in_device *out_dev = NULL;
 1319 unsigned flags = 0;
 1320 u32 itag = 0;
 1321 struct rtable *rth;
 1322 unsigned hash;
 1323 u32 spec_dst;
 1324 int err = −EINVAL;
 1325 int free_res = 0;
 1326

If IP is not supported on the net_device on which the packet arrived, then the packet must be dropped.

 1327 /* IP on this device is disabled. */
 1328
 1329 if (!in_dev)
 1330 goto out;

1

A key is constructed for lookup into the FIB.

 1332 key.dst = daddr;
 1333 key.src = saddr;
 1334 key.tos = tos;
 1335 #ifdef CONFIG_IP_ROUTE_FWMARK
 1336 key.fwmark = skb−>nfmark;
 1337 #endif
 1338 key.iif = dev−>ifindex;
 1339 key.oif = 0;
 1340 key.scope = RT_SCOPE_UNIVERSE;

A hash value is derived from the destination address, source address, input interface index and type of
service. Note that the value of hash is used for cache lookups and should not be confused with the
value of key which is used for FIB lookups. The value computed here is not used until near the end
of the routine where it is used to identify the proper hash queue into which to insert a the newly
created struct rtable entry.

 1342 hash = rt_hash_code(daddr, saddr ^ (key.iif << 5),

tos);

When the source address is a multicast/badclass/loopback address, an error is returned straightaway.
The term martian is commonly used to refer to an IP address that appears to be defective or spoofed
in some way.

 1343
 1344 /* Check for the most weird martians, which can

be not detected by fib_lookup.
 1346 */
 1347
 1348 if (MULTICAST(saddr) || BADCLASS(saddr) ||

LOOPBACK(saddr))
 1349 goto martian_source;

If the packet has a broadcast destination address, a jump is taken to the broadcast input handler.
When both source and destination addresses are NULL, the packet is considered to have been
broadcast, but the rationale for this choice is unclear.

 1351 if (daddr == 0xFFFFFFFF || (saddr == 0 && daddr == 0))
 1352 goto brd_input;

2

Zero valued source addresses are invalid unless the destination is also zero.

 1354 /* Accept zero addresses only to limited broadcast;

I even do not know to fix it or not. Waiting for
complains :−)

*/
 1357 if (ZERONET(saddr))
 1358 goto martian_source;

When the destination is a badclass/loopback/zeronet address, an error is also returned.

 1360 if (BADCLASS(daddr) || ZERONET(daddr)||LOOPBACK(daddr))
 1361 goto martian_destination;

After the source and destination addresses are validated, the FIB is searched in an attempt to resolve
the key constructed earlier. Recall that when class based routing is not in effect, that the
fib_lookup() function attempts a lookup in both the local and main tables in that order. If the local
table lookup succeeds the main table will not be searched. Recall that the following are the criteria
for success in lookup.

� key−>dst == fn−>fn_key with respect to the zone’s prefix length
� f−>fn_state & FN_S_ZOMBIE) == 0
� f−>fn_scope >= key−>scope which is RT_SCOPE_UNIVERSE here.
� fi−>fib_flags & RTNH_F_DEAD == 0
� nh−>nh_flags & RTNH_F_DEAD == 0
� !key−>oif || key−>oif == nh−>nh_oif and key−>oif == 0 here

 1363 /*
 1364 * Now we are ready to route packet.
 1365 */
 1366 if ((err = fib_lookup(&key, &res)) != 0) {

When the FIB lookup fails, the routing process must be aborted and the packet dropped. If the input
device is not configured to support forwarding, there is nothing more to be done. If forwarding is
enabled, a jump to no_route is taken where an entry with type set to RTN_UNREACHABLE is
added to the routing cache. This action will make it unnecessary to repeat the FIB lookup in the
likely case of the arrival of additional unrouteable packets with the same destination.

 1367 if (!IN_DEV_FORWARD(in_dev))
 1368 goto e_inval;
 1369 goto no_route;
 1370 }
 1371 free_res = 1; /* remember to free the res struct */
 1372

3

A per processor count of routes resolved in the FIB is maintained and is incremented here.

 1373 rt_cache_stat[smp_processor_id()].in_slow_tot++;

CONFIG_IP_ROUTE_NAT is an option to enable fast network address translation. We do not
consider the details of NAT support here.

 1375 #ifdef CONFIG_IP_ROUTE_NAT

 /* Policy is applied before mapping destination,
 but rerouting after map should be made with

old source.
 */

 1380 if (1) {
 1381 u32 src_map = saddr;
 1382 if (res.r)
 1383 src_map = fib_rules_policy(saddr, &res,

&flags);
 1384
 1385 if (res.type == RTN_NAT) {
 1386 key.dst = fib_rules_map_destination(daddr,

&res);
 1387 fib_res_put(&res);
 1388 free_res = 0;
 1389 if (fib_lookup(&key, &res))
 1390 goto e_inval;
 1391 free_res = 1;
 1392 if (res.type != RTN_UNICAST)
 1393 goto e_inval;
 1394 flags |= RTCF_DNAT;
 1395 }
 1396 key.src = src_map;
 1397 }
 1398 #endif

4

Reaching this point indicates that the FIB lookup succeded. Therefore, delivery to the destination is
thought to be possible, but before delivery can take place several tests involving the RTN and the
legitimacy of the source address must be performed. If result is of type RTN_BROADCAST, the
packet is processed as a broadcast directed to this system.

 1400 if (res.type == RTN_BROADCAST)
 1401 goto brd_input;

If the result is of type RTN_LOCAL , the packet is destined for this host. However, the FIB is used
to validate source address before the packet is accepted.

 1403 if (res.type == RTN_LOCAL) {
 1404 int result;

 1405 result = fib_validate_source(saddr, daddr,
tos, loopback_dev.ifindex,

 dev, &spec_dst, &itag);
 1408 if (result < 0)
 1409 goto martian_source;

When the value of result is positive, the scope of the sender is RT_SCOPE_HOST. This indicates
that the source address is actually owned by this host and the appropriate routing cache flag is set.

 1410 if (result)
 1411 flags |= RTCF_DIRECTSRC;

Note that the value spec_dst that is filled in by fib_validate_source is not used. Instead spec_dst is
unconditionally set to daddr which was passed as an input parameter to this routine. This action is in
accordance with RFC 791 Section 3.2.1 which states that: ‘‘The specific−destination address is
defined to be the destination address in the IP header unless the header contains a broadcast or
multicast address, in which case the specific−destination is an IP address assigned to the physical
interface on which the datagram arrived."

 1412 spec_dst = daddr;
 1413 goto local_input;
 1414 }

1 http://www.freesoft.org/CIE/RFC/1122/34.htm

5

At this point it is ensured that the final destination of this packet is not on this host. If the interface
on which it is arrived is not configured for forwarding, then the packet must be dropped.

 1416 if (!IN_DEV_FORWARD(in_dev))
 1417 goto e_inval;

For the packet to be forwarded it is necessary that the route type be RTN_UNICAST. Other route
types (e.g., RTN_BLACKHOLE) also cause the packet to be dropped.

 1418 if (res.type != RTN_UNICAST)
 1419 goto martian_destination;

CONFIG_IP_ROUTE_MULTIPATH is an option that may be used to specify several alternative
paths for certain packets. The fib_select_multipath() function considers all these paths to be of equal
cost and chooses one of them in a non−deterministic fashion when a packet is to be routed.

 1421 #ifdef CONFIG_IP_ROUTE_MULTIPATH
 1422 if (res.fi−>fib_nhs > 1 && key.oif == 0)
 1423 fib_select_multipath(&key, &res);
 1424 #endif

A pointer to the struct in_device associated with the output struct net_device onto which the packet is
to be forwarded is obtained here. The FIB_RES_DEV(res) macro,
res.fi−>fib_nh[(res).nh_sel].nh_dev, extracts the struct net_device pointer from the next hop array of
type struct fib_nh that is embedded in the struct fib_info associated with the selected route.

 1425 out_dev = in_dev_get(FIB_RES_DEV(res));
 1426 if (out_dev == NULL) {
 1427 if (net_ratelimit())
 1428 printk(KERN_CRIT "Bug in

ip_route_input_slow(). "
 "Please, report\n");
 1430 goto e_inval;
 1431 }

6

As seen earlier in the case of local delivery, it is necessary to validate the source address before
forwarding the packet.

 1433 err = fib_validate_source(saddr, daddr, tos,

FIB_RES_OIF(res), dev,
 1434 &spec_dst, &itag);
 1435 if (err < 0)
 1436 goto martian_source;
 1437

Also as noted previously, if the value returned by fib_validate_source() is positive, then the source
IP address is owned by this host.

 1438 if (err)
 1439 flags |= RTCF_DIRECTSRC;

When a packet is to be retransmitted on the interface upon which it was received (and some
additional constraints are met), the RTCF_DOREDIRECT flag is set in the routing cache element.
Setting this flag causes an ICMP redirect packet to be returned to the system that originated the
packet. Note that a system acting as a router apparently will never receive a redirect even if it might
improve routing.

 1441 if (out_dev == in_dev && err && !(flags &
(RTCF_NAT | RTCF_MASQ)) &&

 1442 (IN_DEV_SHARED_MEDIA(out_dev) ||
 1443 inet_addr_onlink(out_dev, saddr,

FIB_RES_GW(res))))
 1444 flags |= RTCF_DOREDIRECT;

7

The inet_addr_onlink() function is defined in net/ipv4/devinet.c. Here the parameter a is the source
address for the packet, and b is the IP address of the next hop gateway. The function
inet_ifa_match(), defined in include/linux/inetdevice.h returns true if the IP address associated with
the interface matches the parameter address with respect to the netmask of the interface. Therefore,
the test here is essentially verifying that the next hop gateway is in the same broadcast domain as the
interface which must be the case if it is possible to use the gateway at all!

 187 int inet_addr_onlink(struct in_device *in_dev, u32 a,
u32 b)

 188 {
 189 read_lock(&in_dev−>lock);
 190 for_primary_ifa(in_dev) {
 191 if (inet_ifa_match(a, ifa)) {
 192 if (!b || inet_ifa_match(b, ifa)) {
 193 read_unlock(&in_dev−>lock);
 194 return 1;
 195 }
 196 }
 197 } endfor_ifa(in_dev);
 198 read_unlock(&in_dev−>lock);
 199 return 0;
 200 }

 88 static __inline__ int inet_ifa_match(u32 addr, struct
in_ifaddr *ifa)

 89 {
 90 return !((addr^ifa−>ifa_address)&ifa−>ifa_mask);
 91 }

The function ip_route_input_slow() might also be called from arp_rcv(). Hence the protocol type is
verified before creating a routing cache entry. RTCF_DNAT ..??

 1446 if (skb−>protocol != __constant_htons(ETH_P_IP)) {
/* Not IP (i.e. ARP). Do not create route,

if it is invalid for proxy arp. DNAT
routes are always valid.

 1449 */
 1450 if (out_dev == in_dev && !(flags & RTCF_DNAT))
 1451 goto e_inval;
 1452 }

8

Allocate a routing cache destination entry (struct dst_entry) for the packet to be forwarded.

 1454 rth = dst_alloc(&ipv4_dst_ops);
 1455 if (!rth)
 1456 goto e_nobufs;

The parameter, ipv4_dst_ops, is declared and initialized in net/ipv4/route.c.

 141 struct dst_ops ipv4_dst_ops = {
 142 family: AF_INET,
 143 protocol: __constant_htons(ETH_P_IP),
 144 gc: rt_garbage_collect,
 145 check: ipv4_dst_check,
 146 reroute: ipv4_dst_reroute,
 147 destroy: ipv4_dst_destroy,
 148 negative_advice: ipv4_negative_advice,
 149 link_failure: ipv4_link_failure,
 150 entry_size: sizeof(struct rtable),
 151 };

The dst_alloc() function is defined in net/core/dev.c.

 95 void * dst_alloc(struct dst_ops * ops)
 96 {
 97 struct dst_entry * dst;

If the number of entries in the routing cache exceeds the threshold established at system initialization
time, then the garbage collection function, which was also set a boot time to point to
rt_garbage_collect() is called. The threshold value, ipv4_dst_ops.gc_thresh, was set to
(rt_hash_mask + 1) in ip_rt_init() which was called by ip_init(). Need to include rt_garbage_collect
..

 99 if (ops−>gc && atomic_read(&ops−>entries) >

ops−>gc_thresh) {
 100 if (ops−>gc())
 101 return NULL;
 102 }

9

As described earlier the struct rtable consists of a struct dst_entry followed by a few fields.

 62 struct rtable
 63 {
 64 union
 65 {
 66 struct dst_entry dst;
 67 struct rtable *rt_next;
 68 } u;
 69
 70 unsigned rt_flags;
 71 unsigned rt_type;
 72
 73 __u32 rt_dst; /* Path destination */
 74 __u32 rt_src; /* Path source */
 75 int rt_iif;
 76
 77 /* Info on neighbour */
 78 __u32 rt_gateway;
 79
 80 /* Cache lookup keys */
 81 struct rt_key key;
 82
 83 /* Miscellaneous cached information */
 84 __u32 rt_spec_dst; /* RFC1122 specific destination */
 85 struct inet_peer *peer; /* long−living peer info */
 86
 87 #ifdef CONFIG_IP_ROUTE_NAT
 88 __u32 rt_src_map;
 89 __u32 rt_dst_map;
 90 #endif
 91 };

The meaning of the individual bits of rt_flag are defined here. The high order half of the rt_flags
word is mapped by the RTCF_ values defined below.
 50
 51 #define RTF_UP 0x0001 /* route usable */
 52 #define RTF_GATEWAY 0x0002 /* dest is a gateway */
 53 #define RTF_HOST 0x0004 /* host entry */
 54 #define RTF_REINSTATE 0x0008 /* reinstate after tmout*/
 55 #define RTF_DYNAMIC 0x0010 /* created dyn. (by redrct)*/
 56 #define RTF_MODIFIED 0x0020 /* modified dyn. (by redrct)*/
 57 #define RTF_MTU 0x0040 /* specific MTU for route */
 58 #define RTF_MSS RTF_MTU /* Compatibility :−(*/
 59 #define RTF_WINDOW 0x0080 /* per route window clamping */
 60 #define RTF_IRTT 0x0100 /* Initial round trip time */
 61 #define RTF_REJECT 0x0200 /* Reject route */

10

Unfortunately no commentary accompanies these definitions.

 12 #define RTCF_NOTIFY 0x00010000
 13 #define RTCF_DIRECTDST 0x00020000
 14 #define RTCF_REDIRECTED 0x00040000
 15 #define RTCF_TPROXY 0x00080000
 16
 17 #define RTCF_FAST 0x00200000
 18 #define RTCF_MASQ 0x00400000
 19 #define RTCF_SNAT 0x00800000
 20 #define RTCF_DOREDIRECT 0x01000000
 21 #define RTCF_DIRECTSRC 0x04000000
 22 #define RTCF_DNAT 0x08000000
 23 #define RTCF_BROADCAST 0x10000000
 24 #define RTCF_MULTICAST 0x20000000
 25 #define RTCF_REJECT 0x40000000
 26 #define RTCF_LOCAL 0x80000000
 27

These are the possible value for rt_type. Unlike rt_flags these are mutually exclusive and thus
enumerated instead of bit mapped.

 100 enum
 101 {
 102 RTN_UNSPEC,
 103 RTN_UNICAST, /* Gateway or direct route */
 104 RTN_LOCAL, /* Accept locally */
 105 RTN_BROADCAST, /* Accept locally as broadcast,
 106 send as broadcast */
 107 RTN_ANYCAST, /* Accept locally as broadcast,
 108 but send as unicast */
 109 RTN_MULTICAST, /* Multicast route */
 110 RTN_BLACKHOLE, /* Drop */
 111 RTN_UNREACHABLE, /* Destination is unreachable */
 112 RTN_PROHIBIT, /* Administratively prohibited */
 113 RTN_THROW, /* Not in this table */
 114 RTN_NAT, /* Translate this address */
 115 RTN_XRESOLVE, /* Use external resolver */
 116 };
 117

11

Continuing in dst_alloc() a new dst_entry structure is allocated from the slab cache
(ipv4_dst_ops.kmem_cachep) and initialized to its default state.

 103 dst = kmem_cache_alloc(ops−>kmem_cachep,
SLAB_ATOMIC);

 104 if (!dst)
 105 return NULL;
 106 memset(dst, 0, ops−>entry_size);
 107 dst−>ops = ops;
 108 dst−>lastuse = jiffies;
 109 dst−>input = dst_discard;
 110 dst−>output = dst_blackhole;
 111 atomic_inc(&dst_total);
 112 atomic_inc(&ops−>entries);
 113 return dst;
 114 }

Back in ip_route_input_slow(), initialization of the destination entry is completed. Recall that the
struct rtable is a union which consists of a struct dst_entry and a struct rtable *. Therefore the struct
dst_entry pointer returned by dst_alloc() may be interchangeably used as a struct rtable pointer.

 1458 atomic_set(&rth−>u.dst.__refcnt, 1);
 1459 rth−>u.dst.flags= DST_HOST;
 1460 rth−>key.dst = daddr;
 1461 rth−>rt_dst = daddr;
 1462 rth−>key.tos = tos;
 1463 #ifdef CONFIG_IP_ROUTE_FWMARK
 1464 rth−>key.fwmark = skb−>nfmark;
 1465 #endif
 1466 rth−>key.src = saddr;
 1467 rth−>rt_src = saddr;
 1468 rth−>rt_gateway = daddr;
 1469 #ifdef CONFIG_IP_ROUTE_NAT
 1470 rth−>rt_src_map = key.src;
 1471 rth−>rt_dst_map = key.dst;
 1472 if (flags&RTCF_DNAT)
 1473 rth−>rt_gateway = key.dst;
 1474 #endif
 1475 rth−>rt_iif =
 1476 rth−>key.iif = dev−>ifindex;
 1477 rth−>u.dst.dev = out_dev−>dev;
 1478 dev_hold(rth−>u.dst.dev);
 1479 rth−>key.oif = 0;
 1480 rth−>rt_spec_dst= spec_dst;

12

Since this section of the code is processing packets forwarded packets for which this host is an
intermediate host, the input function pointer of the destination entry is set to ip_forward() and the
output function pointer is set to ip_output(). It should be remembered that this routing cache element
is being set up to faciltate the processing of future packets.

 1482 rth−>u.dst.input = ip_forward;
 1483 rth−>u.dst.output = ip_output;
 1484
 1485 rt_set_nexthop(rth, &res, itag);

What transpires next involves copying routing information from the fib_info structure to the
dst_entry structure and is a real mess. The enumeration below identifies elements of the route
metrics array that are carried in the fib_metrics array of the fib_info structure.

 261 enum
 262 {
 263 RTAX_UNSPEC,
 265 RTAX_LOCK,
 267 RTAX_MTU,
 269 RTAX_WINDOW,
 271 RTAX_RTT,
 273 RTAX_RTTVAR,
 275 RTAX_SSTHRESH,
 277 RTAX_CWND,
 279 RTAX_ADVMSS,
 281 RTAX_REORDERING,
 283 };
 284 #define RTAX_MAX RTAX_REORDERING

 68 unsigned fib_metrics[RTAX_MAX];
 69 #define fib_mtu fib_metrics[RTAX_MTU−1]
 70 #define fib_window fib_metrics[RTAX_WINDOW−1]
 71 #define fib_rtt fib_metrics[RTAX_RTT−1]
 72 #define fib_advmss fib_metrics[RTAX_ADVMSS−1]

Alas, the corresponding elements of the struct dst_entry are not defined as an array but instead
explicitly declared as individual variables. This practice makes it necessary to ensure manually that
the definitions remain in sync, but no warning to that effect is present anywhere in the code!

 39 unsigned mxlock;
 40 unsigned pmtu;
 41 unsigned window;
 42 unsigned rtt;
 43 unsigned rttvar;
 44 unsigned ssthresh;
 45 unsigned cwnd;
 46 unsigned advmss;
 47 unsigned reordering;

13

The rt_set_nexthop() function is defined in net/ipv4/route.c. Its mission is to copy required elements
of the fib_info structure into their counter parts in the struct rtable.

 1180 static void rt_set_nexthop(struct rtable *rt, struct
fib_result *res, u32 itag)

 1181 {
 1182 struct fib_info *fi = res−>fi;
 1183
 1184 if (fi) {
 1185 if (FIB_RES_GW(*res) &&
 1186 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
 1187 rt−>rt_gateway = FIB_RES_GW(*res);
 1188 memcpy(&rt−>u.dst.mxlock, fi−>fib_metrics,
 1189 sizeof(fi−>fib_metrics));
 1190 if (fi−>fib_mtu == 0) {
 1191 rt−>u.dst.pmtu = rt−>u.dst.dev−>mtu;
 1192 if (rt−>u.dst.mxlock & (1 << RTAX_MTU)

&& rt−>rt_gateway != rt−>rt_dst &&
 1194 rt−>u.dst.pmtu > 576)
 1195 rt−>u.dst.pmtu = 576;
 1196 }
 1197 #ifdef CONFIG_NET_CLS_ROUTE
 1198 rt−>u.dst.tclassid =

FIB_RES_NH(*res).nh_tclassid;
 1199 #endif

The else block handles the case in which the fib_result has no corresponding fib_info. The conditions
under which this might occur are not clear. Here the mtu is inherited from the net_device.

 1200 } else
 1201 rt−>u.dst.pmtu = rt−>u.dst.dev−>mtu;

Here it is ensured that the mtu does not exceed the maximum mtu, and the initial maximum segment
size for TCP sessions is set to mtu−40. The value 40 is the sum of the sizes of standard TCP and IP
headers. Since this section of the code is handling a forwarded packet, its not clear why it is
necessary to set up advmss.

 1203 if (rt−>u.dst.pmtu > IP_MAX_MTU)
 1204 rt−>u.dst.pmtu = IP_MAX_MTU;
 1205 if (rt−>u.dst.advmss == 0)
 1206 rt−>u.dst.advmss = max_t(unsigned int,

rt−>u.dst.dev−>mtu − 40,
 1207 ip_rt_min_advmss);
 1208 if (rt−>u.dst.advmss > 65535 − 40)
 1209 rt−>u.dst.advmss = 65535 − 40;
 1210

14

 1211 #ifdef CONFIG_NET_CLS_ROUTE
 1212 #ifdef CONFIG_IP_MULTIPLE_TABLES
 1213 set_class_tag(rt, fib_rules_tclass(res));
 1214 #endif
 1215 set_class_tag(rt, itag);
 1216 #endif
 1217 rt−>rt_type = res−>type;
 1218 }

On return from rt_set_next_hop(), the routing of the packet to be forwarded concludes here in
ip_route_input_slow().

 1487 rth−>rt_flags = flags;

CONFIG_NET_FASTROUTE is an option to allow direct NIC−to−NIC data transfer on a local
network, which is fast.

 1489 #ifdef CONFIG_NET_FASTROUTE
 1490 if (netdev_fastroute &&

!(flags&(RTCF_NAT|RTCF_MASQ|
RTCF_DOREDIRECT))) {

 1491 struct net_device *odev = rth−>u.dst.dev;
 1492 if (odev != dev &&
 1493 dev−>accept_fastpath &&
 1494 odev−>mtu >= dev−>mtu &&
 1495 dev−>accept_fastpath(dev,

&rth−>u.dst) == 0)
 1496 rth−>rt_flags |= RTCF_FAST;
 1497 }
 1498 #endif

Finally, the newly constructed entry is added to routing cache, the FIB table and any device
references held are released, and a return is made to the caller.

 1500 intern:
 1501 err = rt_intern_hash(hash, rth,

(struct rtable**)&skb−>dst);
 1502 done:
 1503 in_dev_put(in_dev);
 1504 if (out_dev)
 1505 in_dev_put(out_dev);
 1506 if (free_res)
 1507 fib_res_put(&res);
 1508 out: return err;

15

Handling of broadcast messages destined for this host.

A jump from line 1401 to the tag brd_input was effected when it was determined that the packet
carried a legitimate broadcast address. Here the protocol type and source address are validated and
specific, local destination address is obtained. As noted earlier if fib_validate_source() returns a
postive value this host owns the source address.

 1510 brd_input:
 1511 if (skb−>protocol !=__constant_htons(ETH_P_IP))
 1512 goto e_inval;

 1514 if (ZERONET(saddr))
 1515 spec_dst = inet_select_addr(dev, 0,

RT_SCOPE_LINK);
 1516 else {
 1517 err = fib_validate_source(saddr, 0, tos, 0,

dev, &spec_dst, &itag);
 1519 if (err < 0)
 1520 goto martian_source;
 1521 if (err)
 1522 flags |= RTCF_DIRECTSRC;
 1523 }

 1524 flags |= RTCF_BROADCAST;
 1525 res.type = RTN_BROADCAST;
 1526 rt_cache_stat[smp_processor_id()].in_brd++;

Handling of unicast packets destined for this host.

The handling of broadcast packets merges with the handling of unicast packets destined for this host.
As noted previously, in the allocation of a new routing cache element, the void pointer returned by
dst_alloc() may be interchangeably used as a pointer to either struct rtable or the embedded struct
dst_entry.

 1528 local_input:
 1529 rth = dst_alloc(&ipv4_dst_ops);
 1530 if (!rth)
 1531 goto e_nobufs;
 1532

16

Since the destination is now known to be this host the output function in the cache entry is set to
ip_rt_bug().

 1533 rth−>u.dst.output= ip_rt_bug;
 1534
 1535 atomic_set(&rth−>u.dst.__refcnt, 1);
 1536 rth−>u.dst.flags= DST_HOST;
 1537 rth−>key.dst = daddr;
 1538 rth−>rt_dst = daddr;
 1539 rth−>key.tos = tos;

 1540 #ifdef CONFIG_IP_ROUTE_FWMARK
 1541 rth−>key.fwmark = skb−>nfmark;
 1542 #endif
 1543 rth−>key.src = saddr;
 1544 rth−>rt_src = saddr;
 1545 #ifdef CONFIG_IP_ROUTE_NAT
 1546 rth−>rt_dst_map = key.dst;
 1547 rth−>rt_src_map = key.src;
 1548 #endif
 1549 #ifdef CONFIG_NET_CLS_ROUTE
 1550 rth−>u.dst.tclassid = itag;
 1551 #endif
 1552 rth−>rt_iif =
 1553 rth−>key.iif = dev−>ifindex;
 1554 rth−>u.dst.dev = &loopback_dev;
 1555 dev_hold(rth−>u.dst.dev);
 1556 rth−>key.oif = 0;
 1557 rth−>rt_gateway = daddr;
 1558 rth−>rt_spec_dst= spec_dst;

Finally, if the FIB lookup did not return a fib_result with route type set to RTN_UNREACHABLE ,
the input member of the destination entry is set to ip_local_deliver(). It is not intuitively clear why
a destination address owned by this system would ever be considered unreachable. However, code
on the next page indicates that when an unknown destination is encountered, a routing cache entry
bearing a local address is created and the route type is set to unreachable.

 1559 rth−>u.dst.input= ip_local_deliver;
 1560 rth−>rt_flags = flags | RTCF_LOCAL;
 1561 if (res.type == RTN_UNREACHABLE) {
 1562 rth−>u.dst.input= ip_error;
 1563 rth−>u.dst.error= −err;
 1564 rth−>rt_flags &= ~RTCF_LOCAL;
 1565 }
 1566 rth−>rt_type = res.type;
 1567 goto intern; /* Jump back to line 1500 */

17

Handling FIB Lookup Failure

A jump to no_route occurs if forwarding is enabled on the input device on which the packet arrived
but the destination address is not found in the FIB. The inet_select_addr() function is called to obtain
an IP address associated with the device on which the packet arrived. The dst parameter is set to 0
and the scope parameter set to RT_SCOPE_UNIVERSE which also has the value 0. In this case
inet_select_addr() will just return the IP address of the first configured interface associated with the
struct net_device.

 1569 no_route:
 1570 rt_cache_stat[smp_processor_id()].in_no_route++;
 1571 spec_dst = inet_select_addr(dev, 0,

RT_SCOPE_UNIVERSE);

A jump back to local_input is now made for the purpose of setting up an unreachable destination
entry in the routing cache. The packet will eventually be dropped by ip_error.

 1572 res.type = RTN_UNREACHABLE;
 1573 goto local_input;

Handling Martian Destination Addresses

According to RFC 1812 invalid (martian) destination addresses should be logged and not added to
the routing cache. The device name, destination address and source address of the packet are logged
and −EINVAL is returned.

 1578 martian_destination:
 1579 rt_cache_stat[smp_processor_id()].in_martian_dst++;
 1580 #ifdef CONFIG_IP_ROUTE_VERBOSE
 1581 if (IN_DEV_LOG_MARTIANS(in_dev) &&

net_ratelimit())
 1582 printk(KERN_WARNING "martian destination

%u.%u.%u.%u from "
 1583 "%u.%u.%u.%u, dev %s\n",
 1584 NIPQUAD(daddr), NIPQUAD(saddr),

dev−>name);
 1585 #endif

 1586 e_inval:
 1587 err = −EINVAL;
 1588 goto done;

 1590 e_nobufs:
 1591 err = −ENOBUFS;
 1592 goto done;

18

Handling Martian Source Addresses

When an invalid source address is detected the device name, destination address, source address and
"hardware header" of a packet are logged. The net_ratelimit() constraints the rate at which the
messages are logged.

 1594 martian_source:
 1595
 1596rt_cache_stat[smp_processor_id()].in_martian_src++;

 1597 #ifdef CONFIG_IP_ROUTE_VERBOSE
 1598 if (IN_DEV_LOG_MARTIANS(in_dev) &&

net_ratelimit()) {
 /*
 RFC1812 recommendation, if source is martian,

the only hint is MAC header.
 */
 1603 printk(KERN_WARNING "martian source

%u.%u.%u.%u from "
 1604 "%u.%u.%u.%u, on dev %s\n",
 1605 NIPQUAD(daddr), NIPQUAD(saddr),

dev−>name);
 1606 if (dev−>hard_header_len) {
 1607 int i;
 1608 unsigned char *p = skb−>mac.raw;
 1609 printk(KERN_WARNING "ll header: ");
 1610 for (i = 0; i < dev−>hard_header_len;

i++, p++) {
 1611 printk("%02x", *p);
 1612 if (i < (dev−>hard_header_len − 1))
 1613 printk(":");
 1614 }
 1615 printk("\n");
 1616 }
 1617 }
 1618 #endif
 1619 goto e_inval;
 1620 }

19

Validation of the Source IP Address

The fib_validate_source() function is defined in net/ipv4/fib_frontend.c. Its mission is to determine
that a route exists back to the sender of a received packet. Additional functions include determining
on exactly which "logical" interface this packet arrived, calculating the "specific destination"
address, and ensuring that the packet arrived on the expected physical interface.

 206 int fib_validate_source(u32 src, u32 dst, u8 tos, int

oif, struct net_device *dev, u32 *spec_dst, u32 *itag)
 208 {
 209 struct in_device *in_dev;
 210 struct rt_key key;
 211 struct fib_result res;
 212 int no_addr, rpf;
 213 int ret;

The first step is to construct the FIB lookup key. Since the source address is being validated, the
value of key.dst is set to src.

 215 key.dst = src;
 216 key.src = dst;
 217 key.tos = tos;
 218 key.oif = 0;
 219 key.iif = oif;
 220 key.scope = RT_SCOPE_UNIVERSE;
 221
 222 no_addr = rpf = 0;
 223 read_lock(&inetdev_lock);

20

The no_addr and rpf (receive packet filter) flags.

Each device that supports IPv4 traffic has an associated structure of type struct in_device that
contains IPv4 specific data for the device. The variable no_addr is a flag set that is to one when
ifa_list is empty. How could this happen? The ifa_list is a list of structures defining the addresses
associated with a struct in_device which is in turn associated with a struct net_device.

 60 struct in_ifaddr
 61 {
 62 struct in_ifaddr *ifa_next;
 63 struct in_device *ifa_dev;
 64 u32 ifa_local;
 65 u32 ifa_address;
 66 u32 ifa_mask;
 67 u32 ifa_broadcast;
 68 u32 ifa_anycast;
 69 unsigned char ifa_scope;
 70 unsigned char ifa_flags;
 71 unsigned char ifa_prefixlen;
 72 char ifa_label[IFNAMSIZ];
 73 };

When both IP and the device have received packet filtering enabled, incoming packets, whose routing
table entry for their source address doesn’t match an IP address bound to the network interface on
which they arrived rejected. This procedure can prevent some forms of IP−spoofing.2

The IN_DEV_RPFILTER macro, defined in include/linux/inetdevice.h, is a macro which
determines whether receive packet filtering is enabled.

 41 #define IN_DEV_RPFILTER(in_dev)
(ipv4_devconf.rp_filter && (in_dev)−>cnf.rp_filter)

 224 in_dev = __in_dev_get(dev);
 225 if (in_dev) {
 226 no_addr = in_dev−>ifa_list == NULL;
 227 rpf = IN_DEV_RPFILTER(in_dev);
 228 }
 229 read_unlock(&inetdev_lock);
 230
 231 if (in_dev == NULL)
 232 goto e_inval;

2 http://lxr.linux.no/source/Documentation/Configure.help#L5036

21

Searching the FIB for the Source of the Packet.

Attempt to look up the source address in the FIB. A return code of NULL indicates success, and on
success, res points to a filled in results structure. On failure it is necessary to visit the last_resort.

 234 if (fib_lookup(&key, &res))
 235 goto last_resort;

We have seen earlier that broadcast and multicast source addresses are considered martian.
Therefore, since a source address is being validated, only unicast route types are legitimate.

 236 if (res.type != RTN_UNICAST)
 237 goto e_inval_res;

Obtain the specific destination address. The FIB_RES_PREF_SRC macro uses the prefsrc field of
the fib_info structure if it is not NULL. If that field is NULL, inet_select_addr() is used to obtain an
IP address associated with the net_device that is assocated with the fib_nh structure that is contained
in the fib_info. This effectively sets the spec_dst to the IP address associated with the outgoing
interface for the return path and would appear to be in contradiction to the comment at the bottom of
page 5. This doesn’t matter though because (on page 5 at least) the spec_dst returned by this routine
is ignored. The fib_combine_itag() function has effect only when CONFIG_NET_CLS_ROUTE is
defined.

 238 *spec_dst = FIB_RES_PREFSRC(res);
 239 fib_combine_itag(itag, &res);

22

The FIB_RES_DEV(res) macro, defined in include/net/ip_fib.h, returns the device that should be
used for the next outgoing hop associated with this FIB entry.

#define FIB_RES_DEV(res) (FIB_RES_NH(res).nh_dev)

Since the key that was used to obtain the res pointer used the remote source address of this packet,
the device on which the packet arrived should be the next hop device for a transmission back to the
source. If multipath routing is enabled and there are multiple possible next hops, (res.fi−>fib_nhs >
1), the code does not bother to ensure that the device upon which the packet was received is included
in the possible outgoing next hops.

 240 #ifdef CONFIG_IP_ROUTE_MULTIPATH
 241 if(FIB_RES_DEV(res) == dev || res.fi−>fib_nhs > 1)
 242 #else
 243 if (FIB_RES_DEV(res) == dev)
 244 #endif
 245 {

If the device upon which the packet was received is consistent with the perceived next hop, and the
scope of the FIB entry is RT_SCOPE_HOST release the FIB entry return success now.

 246 ret = FIB_RES_NH(res).nh_scope >=
RT_SCOPE_HOST;

 247 fib_res_put(&res);
 248 return ret;
 249 }
 250 fib_res_put(&res);

23

If the network device (dev) doesn’t match, the action taken depends upon the state of no_addr and
rpf. The value of no_addr will be 1 only if the interface on which the packet arrived does not have
an associated IP address.

 251 if (no_addr)
 252 goto last_resort;

If receive packet filtering is enabled on the device on which the packet arrived and device on which
the packet arrived was not the expected device, a jump is made to the point at which −EINVAL is
returned to the caller.

 253 if (rpf)
 254 goto e_inval;

If an acceptable device has not been found adjust the key by explicitly encoding the oif with the index
of the device on which the packet was received and retry the fib lookup. If it fails, success is
returned! However, if it succeeds, and the route type is UNICAST, then success is returned only if
the scope of the next hop is RT_SCOPE_HOST.

 255 key.oif = dev−>ifindex;
 256
 257 ret = 0;
 258 if (fib_lookup(&key, &res) == 0) {
 259 if (res.type == RTN_UNICAST) {
 260 *spec_dst = FIB_RES_PREFSRC(res);
 261 ret = FIB_RES_NH(res).nh_scope >=

RT_SCOPE_HOST;
 262 }
 263 fib_res_put(&res);
 264 }
 265 return ret;

We reach here when we couldn’t match network interface. Determine specific destination address
and return. What will inet_select_address() return here?

 267 last_resort:
 268 if (rpf)
 269 goto e_inval;
 270 *spec_dst = inet_select_addr(dev, 0,

RT_SCOPE_UNIVERSE);
 271 *itag = 0;
 272 return 0;
 273
 274 e_inval_res:
 275 fib_res_put(&res);
 276 e_inval:
 277 return −EINVAL;
 278 }

24

