
IP Reassembly

The ip_local_deliver() function, defined in net/ipv4/ip_input.c, is called by ip_rcv_finish.(). Its
function is to reassemble IP fragments that are destined for this host and to call
ip_local_deliver_finish () to deliver a complete packet to transport layer.

 293 int ip_local_deliver(struct sk_buff *skb)
 294 {
 295 /*
 296 * Reassemble IP fragments.
 297 */

The constants IP_MF and IP_OFFSET are defined in include/net/ip.h and are used to access the
fragment management field of the IP header.

 73 #define IP_MF 0x2000 /* Flag: "More Fragments" */
 74 #define IP_OFFSET 0x1FFF /* "Fragment Offset" part */

When an IP packet has the IP_MF flag set or the 13 bit fragment offset is not 0, a call to the
ip_defrag() function is made. The reason for the or condition is that the last fragment of a
fragmented packet will not have IP_MF set but will have a non−zero offset. If the packet to which
the received fragment belongs is still incomplete ip_defrag() returns NULL. In this case a return is
made immediately. If this fragment completes the packet, a pointer to the reassembled packet is
returned, and the packet is forwarded to ip_local_deliver_finish() via the NF_HOOK() call
specifying the NF_IP_LOCAL_IN chain.

 299 if (skb−>nh.iph−>frag_off & htons(IP_MF|IP_OFFSET)) {
 300 skb = ip_defrag(skb);
 301 if (!skb)
 302 return 0;
 303 }

When the packet is not fragmented or was completely reassembled by ip_defrag(), a call to
ip_local_deliver_finish is made to deliver it to transport layer.

 305 return NF_HOOK(PF_INET, NF_IP_LOCAL_IN, skb,
 306 skb−>dev, NULL, ip_local_deliver_finish);
 307 }

1

The remainder of this section is dedicated to the operation of ip_defrag() which is responsible for
the reassembly of fragmented packets and is defined in net/ipv4/ip_fragment.c. Key data
structures are also defined in ip_fragment.c

Each packet that is being reassembled is defined by a struct ipq which is defined in
net/ipv4/ip_fragment.c.

 68 struct ipq {
 69 struct ipq *next; /* linked list pointers */
 70 u32 saddr; /* These fields comprise */
 71 u32 daddr; /* the lookup key */
 72 u16 id;
 73 u8 protocol;
 74 u8 last_in;
 75 #define COMPLETE 4
 76 #define FIRST_IN 2
 77 #define LAST_IN 1
 78
 79 struct sk_buff *fragments; /* linked list of frags*/
 80 int len; /* total length of original pkt */
 81 int meat; /* number of bytes so far. */
 82 spinlock_t lock;
 83 atomic_t refcnt;
 84 struct timer_list timer; /* when will queue expire? */
 85 struct ipq **pprev;
 86 int iif;
 87 struct timeval stamp;
 88 };

Functions of structure elements include:

next: Used to link ipq structures in the same hash bucket.
len: Offset of last data byte in the fragment queue. It is equal to the maximum

value of fragment offset plus fragment length seen so far.
fragments: Points to first element in a list of received fragments.
meat: Sum of the length of the fragments that have been received so far. When the

last fragment has been received and meat == len reassembly has succeded.
last_in: Flags field.

COMPLETE: Fragments queue is complete.
FIRST_IN: First fragment (has offset zero) is on queue.
LAST_IN: Last fragment is on queue.

timer: A timer used for cleaning up an old incomplete fragments queue.

2

The variable, ip_frag_mem, is used to track the total amount of memory used for packet
reassembly. It is a global defined in net/ipv4/ip_fragment.c and initialized to 0.

 /* Memory used for fragments */
 130 atomic_t ip_frag_mem = ATOMIC_INIT(0);

The variable sysctl_ipfrag_high_thresh which is mapped in the /proc file system is declared and
initialized in net/ipv4/ip_fragment.c.

/* Fragment cache limits. We will commit 256K at one time.
Should we cross that limit we will prune down to 192K.
This should cope with even the most extreme cases
without allowing an attacker to measurably harm machine
performance.

*/
 51 int sysctl_ipfrag_high_thresh = 256*1024;
 52 int sysctl_ipfrag_low_thresh = 192*1024;

The ip_defrag() function is passed a pointer to the sk_buff which is known here to contain an
element of a fragmented IP packet.

 596 /* Process an incoming IP datagram fragment. */
 597 struct sk_buff *ip_defrag(struct sk_buff *skb)
 598 {
 599 struct iphdr *iph = skb−>nh.iph;
 600 struct ipq *qp;
 601 struct net_device *dev;
 602
 603 IP_INC_STATS_BH(IpReasmReqds);

Its first order of business is to determine if there is a shortage of reassembly storage. When the
value ip_frag_mem exceeds the high threshold value (sysctl_ipfrag_high_thresh), a call is made to
the ip_evictor() function so that some partially reassembled packets can be discarded.

 605 /* Start by cleaning up the memory. */
 606 if (atomic_read(&ip_frag_mem) >

sysctl_ipfrag_high_thresh)
 607 ip_evictor();

3

If the fragment being processed is the first fragment of a new packet to arrive, a queue is created to
manage its reassembly. Otherwise, the fragment is enqueued in the existing queue. The ip_find()
function is responsible for finding the queue to which a fragment belongs or creating a new queue if
that is required. Its operation will be considered later.

 609 dev = skb−>dev;
 610
 611 /* Lookup (or create) queue header */
 612 if ((qp = ip_find(iph)) != NULL) {
 613 struct sk_buff *ret = NULL;
 614
 615 spin_lock(&qp−>lock);
 616

If the queue was found , the ip_frag_queue() function is used to add the sk_buff to the fragment
queue.

 617 ip_frag_queue(qp, skb);

When both the first and last fragments have been received and fragments queue (packet) becomes
complete, ip_frag_reasm is called to perform reassembly. How could meat == len without
FIRST_IN and LAST_IN set.

 619 if (qp−>last_in == (FIRST_IN|LAST_IN) &&
 620 qp−>meat == qp−>len)
 621 ret = ip_frag_reasm(qp, dev);
 622

With reassembly complete, the queue is no longer needed and it is destroyed here.

 623 spin_unlock(&qp−>lock);
 624 ipq_put(qp);
 625 return ret;
 626 }

In case of any error, the fragment is discarded.

 628 IP_INC_STATS_BH(IpReasmFails);
 629 kfree_skb(skb);
 630 return NULL;
 631 }

4

Finding the ipq that owns the arriving sk_buff

The ip_find() function is defined in net/ipv4/ip_fragment.c. Mapping of a fragment to a struct ipq
is hash based.

/* Find the correct entry in the "incomplete
datagrams" queue for this IP datagram, and create
new one, if nothing is found.

 */
 345 static inline struct ipq *ip_find(struct iphdr *iph)
 346 {
 347 __u16 id = iph−>id;
 348 __u32 saddr = iph−>saddr;
 349 __u32 daddr = iph−>daddr;
 350 __u8 protocol = iph−>protocol;
 351 unsigned int hash = ipqhashfn(id, saddr, daddr,

protocol);

The iphashfn() is defined below. It returns a hash value based on identification number, source
address, destination address and protocol number of the fragment.

 /*
Was: ((((id) >> 1) ^ (saddr) ^ (daddr) ^ (prot)) &
(IPQ_HASHSZ − 1))
I see, I see evil hand of bigendian mafia. On Intel all
the packets hit one hash bucket with this hash function.
8)

 */
 120 static __inline__ unsigned int ipqhashfn(u16 id, u32

saddr, u32 daddr, u8 prot)
 121 {
 122 unsigned int h = saddr ^ daddr;
 123
 124 h ^= (h>>16)^id;
 125 h ^= (h>>8)^prot;
 126 return h & (IPQ_HASHSZ − 1);
 127 }

5

ipq_hash is a hash table with sixty−four buckets used to keep track of various fragments queues.
ip_frag_nqueues denotes the total number of such queues in the hash table. The ipfrag_lock is
a read/write lock used to protect insertion and removal of ipq’s.

 90 /* Hash table. */
 91
 92 #define IPQ_HASHSZ 64
 93
 94 /* Per−bucket lock is easy to add now. */
 95 static struct ipq *ipq_hash[IPQ_HASHSZ];
 96 static rwlock_t ipfrag_lock = RW_LOCK_UNLOCKED;
 97 int ip_frag_nqueues = 0;

The ip_find() function continues by searching the chain indexed by hash for an ipq that matches
fragment’s identification number, source address, destination address and protocol number. If one
is found a pointer to it is returned.

 352 struct ipq *qp;
 353
 354 read_lock(&ipfrag_lock);
 355 for(qp = ipq_hash[hash]; qp; qp = qp−>next) {
 356 if(qp−>id == id &&
 357 qp−>saddr == saddr &&
 358 qp−>daddr == daddr &&
 359 qp−>protocol == protocol) {
 360 atomic_inc(&qp−>refcnt);
 361 read_unlock(&ipfrag_lock);
 362 return qp;
 363 }
 364 }
 365 read_unlock(&ipfrag_lock);

When the first fragment of a packet to arrives, the search will fail. In this case, ip_frag_create is
called to create a new fragments queue for enqueuing received fragment.

 367 return ip_frag_create(hash, iph);
 368 }

6

Creating a new ipq element

The ip_frag_create(), defined in net/ipv4/ip_fragment.c creates a new ipq element and inserts it
into the proper hash chain.

 310 /* Add an entry to the ’ipq’ queue for a newly
received IP datagram. */

 311 static struct ipq *ip_frag_create(unsigned hash,
struct iphdr *iph)

 312 {
 313 struct ipq *qp;
 314
 315 if ((qp = frag_alloc_queue()) == NULL)
 316 goto out_nomem;

frag_alloc_queue is an inline function defined as below. atomic_add is used to add size of struct
ipq structure kmalloc’d to atomic_t type variable ip_frag_mem. Recall that ip_frag_mem denotes
the amount of memory used in keeping track of fragments. Why was not the slab allocator used
here?? Rareness of fragmentation??

 145 static __inline__ struct ipq *frag_alloc_queue(void)
 146 {
 147 struct ipq *qp = kmalloc(sizeof(struct ipq),

GFP_ATOMIC);
 148
 149 if(!qp)
 150 return NULL;
 151 atomic_add(sizeof(struct ipq), &ip_frag_mem);
 152 return qp;
 153 }

On return to ip_frag_create the newly created queue is initialized.

 318 qp−>protocol = iph−>protocol;
 319 qp−>last_in = 0;
 320 qp−>id = iph−>id;
 321 qp−>saddr = iph−>saddr;
 322 qp−>daddr = iph−>daddr;
 323 qp−>len = 0;
 324 qp−>meat = 0;
 325 qp−>fragments = NULL;
 326 qp−>iif = 0;

7

Continuing in ip_frag_create the data and function members of the timer for this queue are
initialized. Note that expires is not set and the timer is not yet added.

 328 /* Initialize a timer for this entry. */
 329 init_timer(&qp−>timer);
 330 qp−>timer.data = (unsigned long) qp; /* pointer to

queue */
 331 qp−>timer.function = ip_expire; /* expire

function */
 332 qp−>lock = SPIN_LOCK_UNLOCKED;
 333 atomic_set(&qp−>refcnt, 1);

ip_frag_intern is called to add the newly created fragments queue to a hash table that
manages all such queues.

 335 return ip_frag_intern(hash, qp);

On failing to allocate a fragments queue structure, we return NULL.

 337 out_nomem:
 338 NETDEBUG(if (net_ratelimit()) printk(KERN_ERR
 "ip_frag_create: no memory left !\n"));
 339 return NULL
 340 }

8

Inserting the new ipq into the hash chain.

The ip_frag_intern() function inserts the newly created ipq in the proper hash queue.

 270 /* Creation primitives. */
 271
 272 static struct ipq *ip_frag_intern(unsigned int hash,

struct ipq *qp_in)
 273 {
 274 struct ipq *qp;
 275

On an SMP kernel, to avoid a race condition where another CPU creates a similar queue and adds it
to the hash table, a recheck is enforced here. If the queue was added by another CPU, a pointer to
the existing ipq is returned and the newly created ipq is destroyed..

 276 write_lock(&ipfrag_lock);
 277 #ifdef CONFIG_SMP
 278 /* With SMP race we have to recheck hash table,

because such entry could be created on other
cpu, while we promoted read lock to write lock.

 281 */
 282 for(qp = ipq_hash[hash]; qp; qp = qp−>next) {
 283 if(qp−>id == qp_in−>id &&
 284 qp−>saddr == qp_in−>saddr &&
 285 qp−>daddr == qp_in−>daddr &&
 286 qp−>protocol == qp_in−>protocol) {

This block is executed only if the queue that was about to be added already exists. As described
above this situation can only occur on an SMP system and should be extremely rare there. The
block destroys the new queue and returns a pointer to the existing one.

 287 atomic_inc(&qp−>refcnt);
 288 write_unlock(&ipfrag_lock);

The COMPLETE flag needs to be set for ipq_put to destroy a fragments queue.

 289 qp_in−>last_in |= COMPLETE;
 290 ipq_put(qp_in);
 291 return qp;
 292 }
 293 }
 294 #endif

9

Arming the timeout timer

The mod_timer() functions sets the expires member of timer qp−>timer and adds it to the list of
timers maintained by kernel. The dependence on the value returned by modtimer is not clear. The
value it returns is actually computed as shown in detatch_timer(). Thus if the timer is not presently
pending qp−>refcount is incremented twice. Otherwise it is incremented only once.

 198 if (!timer_pending(timer))
 199 return 0;
 200 list_del(&timer−>list);
 201 return 1;

 54 /* Important NOTE! Fragment queue must be destroyed
before MSL expires. RFC791 is wrong proposing to
prolongate timer each fragment arrival by TTL.

 */
 57 int sysctl_ipfrag_time = IP_FRAG_TIME;

Continuing in ip_frag_intern() the reassembly timeout timer is armed. IP_FRAG_TIME is defined
in include/net/ip.h as 30 seconds.

76 #define IP_FRAG_TIME (30 * HZ) /* fragment lifetime */

 295 qp = qp_in;
 296
 297 if (!mod_timer(&qp−>timer, jiffies +

sysctl_ipfrag_time))
 298 atomic_inc(&qp−>refcnt);
 299
 300 atomic_inc(&qp−>refcnt);

The new queue is inserted at the head of corresponding hash bucket and the count of all reassembly
queues is incremented.

 301 if((qp−>next = ipq_hash[hash]) != NULL)
 302 qp−>next−>pprev = &qp−>next;
 303 ipq_hash[hash] = qp;
 304 qp−>pprev = &ipq_hash[hash];
 305 ip_frag_nqueues++;
 306 write_unlock(&ipfrag_lock);
 307 return qp;
 308 }

10

The ip_frag_queue() function, called by ip_defrag() , enqueues received fragment in the fragments
queue returned by ip_find.

 /* Add new segment to existing queue. */
 371 static void ip_frag_queue(struct ipq *qp, struct

sk_buff *skb)
 372 {
 373 struct sk_buff *prev, *next;
 374 int flags, offset;
 375 int ihl, end;

If fragments queue is already complete or doomed for destruction, the fragment is discarded
straightaway.

 377 if (qp−>last_in & COMPLETE)
 378 goto err;

Determine the index of the last byte of this fragment and remember it in end.

 380 offset = ntohs(skb−>nh.iph−>frag_off);
 381 flags = offset & ~IP_OFFSET;
 382 offset &= IP_OFFSET;
 383 offset <<= 3; /* offset is in 8−byte chunks */
 384 ihl = skb−>nh.iph−>ihl * 4;
 385
 386 /* Determine the position of this fragment. */
 387 end = offset + skb−>len − ihl;

When received fragment is the last one, set LAST_IN flag and qp−>len is updated if necessary.

 389 /* Is this the final fragment? */
 390 if ((flags & IP_MF) == 0) {
 391 /* If we already have some bits beyond end
 392 or have different end, the segment is

corrrupted.
 393 */
 394 if (end < qp−>len ||
 395 ((qp−>last_in & LAST_IN) && end != qp−>len))
 396 goto err;

This looks like a legitimate last fragment.

 397 qp−>last_in |= LAST_IN;
 398 qp−>len = end;

11

Fragment flags indicate that this should not be the last fragment. Since fragmentation occurs on 8
byte boundaries each fragment should end on an 8 byte boundary. However, since end was derived
from skb−>len it is possible that it does not represent an 8 byte boundary. In that case it is coerced
to 8 byte alignment. As usual the checksumming at this point remains something of a mystery.

 399 } else {
 400 if (end&7) {
 401 end &= ~7;
 402 if (skb−>ip_summed != CHECKSUM_UNNECESSARY)
 403 skb−>ip_summed = CHECKSUM_NONE;
 404 }

If the current end exceeds qp−>len, then the packet is discarded if the last fragment has already
been seen, or qp−>len is reset to end if the last fragment has not been seen.

 405 if (end > qp−>len) {
 406 /* Some bits beyond end −> corruption. */
 407 if (qp−>last_in & LAST_IN)
 408 goto err;
 409 qp−>len = end;
 410 }
 411 }

It would appear that the only way this could happen is that a fragment which is not the last
fragment but had length < 8 was recieved.

 412 if (end == offset)
 413 goto err;

pskb_pull first ensures that IP header is entirely resident in kmalloc’d header and then advances
"data " pointer by size of IP header.

 415 if (pskb_pull(skb, ihl) == NULL)
 416 goto err;

pskb_trim trims fragment, if required, to desired size (IP packet size minus IP header size).

 417 if (pskb_trim(skb, end−offset))
 418 goto err;

12

 Determine the position of the received fragment in the fragments queue.

The offset of each fragment is held in the control buffer of the sk_buff.

offset: Fragment offset.
h: A pointer to a structure that contains IP options.

 420 /* Find out which fragments are in front and at
the back of us in the chain of fragments so
far. We must know where to put this
fragment, right?

 423 */
 424 prev = NULL;
 425 for(next = qp−>fragments; next != NULL; next =

next−>next) {
 426 if (FRAG_CB(next)−>offset >= offset)
 427 break; /* bingo! */
 428 prev = next;
 429 }

FRAG_CB is a macro defined in net/ipv4/ip_fragment.c. It returns a pointer to control buffer space
in the fragment. It is type cast from char * to struct ipfrag_skb_cb *.

 59 struct ipfrag_skb_cb
 60 {
 61 struct inet_skb_parm h;
 62 int offset;
 63 };

 65 #define FRAG_CB(skb)

((struct ipfrag_skb_cb*)((skb)−>cb))

13

Front end overlap

Check to see if the received fragment overlaps the preceeding fragment (prev). Variable "i" is
positive in case of an overlap. Adjust "offset " and use pskb_pull to remove overlapped section from
received fragment.

 431 /* We found where to put this one. Check for
overlap with preceding fragment, and, if
needed, align things so that any overlaps are
eliminated.

 434 */
 435 if (prev) {
 436 int i = (FRAG_CB(prev)−>offset + prev−>len)

− offset;
 437
 438 if (i > 0) {
 439 offset += i;
 440 if (end <= offset)
 441 goto err;
 442 if (!pskb_pull(skb, i))
 443 goto err;
 444 if (skb−>ip_summed != CHECKSUM_UNNECESSARY)
 445 skb−>ip_summed = CHECKSUM_NONE;
 446 }
 447 }

14

Back end overlap

Check if received fragment overlaps with succeeding fragments (next and others).

 449 while (next && FRAG_CB(next)−>offset < end) {
 450 int i = end − FRAG_CB(next)−>offset; /*

overlap is ’i’ bytes */
 451
 452 if (i < next−>len) {

The variable ’i’ denotes number of bytes of overlap with this fragment. In this case, the overlap is
partial. Use pskb_pull to remove this overlapped section and adjust "offset" of this fragment (next).
Since pskb_pull() is extracting data from an existing fragment whose data has already been
included in the reassembly count, it is necessary to decrement qp−>meat.

 453 /* Eat head of the next overlapped
fragment and leave the loop. The
next ones cannot overlap.

 455 */
 456 if (!pskb_pull(next, i))
 457 goto err;
 458 FRAG_CB(next)−>offset += i;
 459 qp−>meat −= i;
 460 if (next−>ip_summed != CHECKSUM_UNNECESSARY)
 461 next−>ip_summed = CHECKSUM_NONE;
 462 break;

In case the entire fragment overlaps with received fragment, detach it from fragments queue and
free it using function frag_kfree_skb.

 463 } else {
 464 struct sk_buff *free_it = next;
 465
 466 /* Old fragmnet is completely

overridden with new one drop it.
 468 */
 469 next = next−>next;
 470
 471 if (prev)
 472 prev−>next = next;
 473 else
 474 qp−>fragments = next;
 475
 476 qp−>meat −= free_it−>len;
 477 frag_kfree_skb(free_it);
 478 }
 479}

15

frag_kfree_skb is an inline function defined as below. atomic_sub is used to subtract true size of
fragment from atomic_t type variable ip_frag_mem. Recall that ip_frag_mem denotes the amount
of memory used in keeping track of fragments.

 133 static __inline__ void frag_kfree_skb(struct sk_buff
*skb)

 134 {
 135 atomic_sub(skb−>truesize, &ip_frag_mem);
 136 kfree_skb(skb);
 137 }

Finally, we set "offset " field in control buffer (struct ipfrag_skb_cb) of received fragment and
insert the fragment into its fragments queue.

 481 FRAG_CB(skb)−>offset = offset;
 482
 483 /* Insert this fragment in the chain of fragments. */
 484 skb−>next = next;
 485 if (prev)
 486 prev−>next = skb;
 487 else
 488 qp−>fragments = skb;

Set fragments queue timestamp to that of received fragment. Add the true size of fragment to
ip_frag_mem. If received fragment has a zero offset, set flag FIRST_IN to indicate that first
fragment is on the queue. qp−>meat is incremented by size of the fragment.

 490 if (skb−>dev)
 491 qp−>iif = skb−>dev−>ifindex;
 492 skb−>dev = NULL;
 493 qp−>stamp = skb−>stamp;
 494 qp−>meat += skb−>len;
 495 atomic_add(skb−>truesize, &ip_frag_mem);

 496 if (offset == 0)
 497 qp−>last_in |= FIRST_IN;
 498
 499 return;

In case of an error, discard the fragment, but not the queue.

 501 err:
 502 kfree_skb(skb);
 503 }

16

Removal of old queues.

The ip_evictor() function is defined in net/ipv4/ip_fragment.c. It destroys old fragments queues
until ip_frag_mem falls below sysctl_ipfrag_low_thresh.

/* Memory limiting on fragments. Evictor trashes the
oldest fragment queue until we are back under the
low threshold.

*/
 203 static void ip_evictor(void)
 204 {
 205 int i, progress;
 206
 207 do {
 208 if (atomic_read(&ip_frag_mem) <=

sysctl_ipfrag_low_thresh)
 209 return;
 210 progress = 0;

Run through each hash bucket, freeing the oldest fragments queue (if any) in it. Since, we always
add a new fragments queue at the head of the hash bucket, the last fragment queue is the oldest in
it. ipq_kill unlinks the given queue from its hash bucket and ipq_put destorys it.

 211 /* FIXME: Make LRU queue of frag heads.
−DaveM */

 212 for (i = 0; i < IPQ_HASHSZ; i++) {
 213 struct ipq *qp;
 214 if (ipq_hash[i] == NULL)
 215 continue;
 216
 217 read_lock(&ipfrag_lock);
 218 if ((qp = ipq_hash[i]) != NULL) {

Go to the end of the queue where the oldest element necessarily resides.

 219 /* find the oldest queue for this
hash bucket */

 220 while (qp−>next)
 221 qp = qp−>next;
 222 atomic_inc(&qp−>refcnt);
 223 read_unlock(&ipfrag_lock);
 224

17

If that queue is not complete (meaning already unlinked) call ipq_kill() to disarm its timer and
unlink it.

 225 spin_lock(&qp−>lock);
 226 if (!(qp−>last_in&COMPLETE))
 227 ipq_kill(qp);
 228 spin_unlock(&qp−>lock);
 229

Call ipq_put to destroy it.

 230 ipq_put(qp);
 231 IP_INC_STATS_BH(IpReasmFails);
 232 progress = 1;
 233 continue;
 234 }
 235 read_unlock(&ipfrag_lock);
 236 }
 237 } while (progress);
 238 }

ipq_kill is defined in net/ipv4/ip_fragment.c. It deletes timer for this queue from the list of timers
maintained by the kernel.

 /* Kill ipq entry. It is not destroyed immediately,
 because caller (and someone more) holds reference

count.
 */
 188 static __inline__ void ipq_kill(struct ipq *ipq)
 189 {
 190 if (del_timer(&ipq−>timer))
 191 atomic_dec(&ipq−>refcnt);
 192
 193 if (!(ipq−>last_in & COMPLETE)) {
 194 ipq_unlink(ipq);
 195 atomic_dec(&ipq−>refcnt);
 196 ipq−>last_in |= COMPLETE;
 197 }
 198 }

18

ipq_unlink merely calls __ipq_unlink.

 107 static __inline__ void ipq_unlink(struct ipq *ipq)
 108 {
 109 write_lock(&ipfrag_lock);
 110 __ipq_unlink(ipq);
 111 write_unlock(&ipfrag_lock);
 112 }

__ipq_unlink does the real work of removing the queue from its hash bucket.

 99 static __inline__ void __ipq_unlink(struct ipq *qp)
 100 {
 101 if(qp−>next)
 102 qp−>next−>pprev = qp−>pprev;
 103 *qp−>pprev = qp−>next;
 104 ip_frag_nqueues−−;
 105 }

After unlinking the queue, ipq_put is called to free all fragments in the queue.
It calls ip_frag_destroy, when queue’s reference count becomes zero.

 179 static __inline__ void ipq_put(struct ipq *ipq)
 180 {
 181 if (atomic_dec_and_test(&ipq−>refcnt))
 182 ip_frag_destroy(ipq);
 183 }

19

ip_frag_destroy does the real work of freeing fragments in the queue.

 159 static void ip_frag_destroy(struct ipq *qp)
 160 {
 161 struct sk_buff *fp;
 162
 163 BUG_TRAP(qp−>last_in&COMPLETE);
 164 BUG_TRAP(del_timer(&qp−>timer) == 0);
 165
 166 /* Release all fragment data. */
 167 fp = qp−>fragments;
 168 while (fp) {
 169 struct sk_buff *xp = fp−>next;
 171 frag_kfree_skb(fp);
 172 fp = xp;
 173 }
 175 /* Finally, release the queue descriptor itself.*/
 176 frag_free_queue(qp);
 177 }

frag_kfree_skb frees the fragment and decreases ip_frag_mem by its true size.

 133 static __inline__ void frag_kfree_skb(struct sk_buff
*skb)

 134 {
 135 atomic_sub(skb−>truesize, &ip_frag_mem);
 136 kfree_skb(skb);
 137 }

Finally, the queue descriptor is freed and ip_frag_mem is decremented by its size.

 139 static __inline__ void frag_free_queue(struct ipq *qp)
 140 {
 141 atomic_sub(sizeof(struct ipq), &ip_frag_mem);
 142 kfree(qp);
 143 }

20

Physically reassembling the packet

The ip_frag_reasm() function is defined in net/ipv4/ip_fragment.c. It builds a new IP datagram
from its fragments. As seen earlier ipq_kill() disarms the timer and removes the reassembly queue
from its hash chain.

 508 static struct sk_buff *ip_frag_reasm(struct ipq *qp,
struct net_device *dev)

 509 {
 510 struct iphdr *iph;
 511 struct sk_buff *fp, *head = qp−>fragments;
 512 int len;
 513 int ihlen;
 514
 515 ipq_kill(qp);
 516
 517 BUG_TRAP(head != NULL);
 518 BUG_TRAP(FRAG_CB(head)−>offset == 0);

Validate length of IP datagram. If it exceeds 64K, we return NULL.

 520 /* Allocate a new buffer for the datagram. */
 521 ihlen = head−>nh.iph−>ihl*4;
 522 len = ihlen + qp−>len;
 523
 524 if(len > 65535)
 525 goto out_oversize;

If head is cloned, pskb_expand_head is called to reallocate kmalloc’d header and skb_shinfo
structure.

 527 /* Head of list must not be cloned. */
 528 if (skb_cloned(head) && pskb_expand_head(head, 0,

0, GFP_ATOMIC))
 529 goto out_nomem;

21

If head has sk_buffs on its frag_list, we allocate a new sk buff header "clone". This section
handles the extremely ugly stuff that never occurs in practice.

 531 /* If the first fragment is fragmented itself,

we split it to two chunks: the first with
data and paged part and the second, holding
only fragments. */

 534 if (skb_shinfo(head)−>frag_list) {
 535 struct sk_buff *clone;
 536 int i, plen = 0;
 537
 538 if ((clone = alloc_skb(0, GFP_ATOMIC)) ==

NULL)
 539 goto out_nomem;

The clone is then linked next to head in the fragments queue. All the fragments from "frag_list" of
head are moved into that of clone.

 540 clone−>next = head−>next;
 541 head−>next = clone;
 542 skb_shinfo(clone)−>frag_list =

skb_shinfo(head)−>frag_list;
 543 skb_shinfo(head)−>frag_list = NULL;

Update len and data_len members of head and clone. Increase ip_frag_mem by the true size of sk
buff pointed to by clone.

 544 for (i=0; i<skb_shinfo(head)−>nr_frags; i++)
 545 plen += skb_shinfo(head)−>frags[i].size;
 546 clone−>len = clone−>data_len =

head−>data_len − plen;
 547 head−>data_len −= clone−>len;
 548 head−>len −= clone−>len;
 549 clone−>csum = 0;
 550 clone−>ip_summed = head−>ip_summed;
 551 atomic_add(clone−>truesize,

&ip_frag_mem);
 552 }

22

Set frag_list of head to next fragment in the queue. This has the effect of placing all the fragments
in the queue on frag_list of head (first fragment). skb_push ensures that "data" points to IP header
.... did we see it being advanced beyond IP header ?? Yes, when a fragment was added to queue, its
data pointer was advanced by size of IP header.

 554 skb_shinfo(head)−>frag_list = head−>next;
 555 skb_push(head, head−>data − head−>nh.raw);

Decrease ip_frag_mem by true size of each fragment on the queue.
Update len, data_len, truesize and csum members of head to reflect that remaining fragments are
on its frag_list.

 556 atomic_sub(head−>truesize, &ip_frag_mem);
 558 for (fp=head−>next; fp; fp = fp−>next) {
 559 head−>data_len += fp−>len;
 560 head−>len += fp−>len;
 561 if (head−>ip_summed != fp−>ip_summed)
 562 head−>ip_summed = CHECKSUM_NONE;
 563 else if (head−>ip_summed == CHECKSUM_HW)
 564 head−>csum = csum_add(head−>csum,

fp−>csum);
 565 head−>truesize += fp−>truesize;
 566 atomic_sub(fp−>truesize, &ip_frag_mem);
 567 }

Finally, after reassembling fragments into one IP datagram, change IP header members, frag_off
(fragment offset) to zero and tot_len (total length) to combined length of all fragments. A pointer to
reassembled datagram is returned.

 569 head−>next = NULL;
 570 head−>dev = dev;
 571 head−>stamp = qp−>stamp;
 572
 573 iph = head−>nh.iph;
 574 iph−>frag_off = 0;
 575 iph−>tot_len = htons(len);
 576 IP_INC_STATS_BH(IpReasmOKs);
 577 qp−>fragments = NULL;
 578 return head;

23

In case of any error, we return NULL.

 580 out_nomem:
 581 NETDEBUG(if (net_ratelimit())
 582 printk(KERN_ERR
 583 "IP: queue_glue: no memory for

gluing queue %p\n",
 584 qp));
 585 goto out_fail;
 586 out_oversize:
 587 if (net_ratelimit())
 588 printk(KERN_INFO
 589 "Oversized IP packet from

%d.%d.%d.%d.\n",
 590 NIPQUAD(qp−>saddr));
 591 out_fail:
 592 IP_INC_STATS_BH(IpReasmFails);
 593 return NULL;
 594 }

24

