
IP Routing

The ip_route_output_slow() function, defined in net/ipv4/route.c is the major route resolver. Given a
‘‘routing key’’ as an input parameter, this routine builds a new route cache entry and stores a pointer
to it in the parameter **rp. A Linux route is defined by (dst, src, tos).

 1690 int ip_route_output_slow(struct rtable **rp, const
struct rt_key *oldkey)

 1691 {
 1692 struct rt_key key;
 1693 struct fib_result res;
 1694 unsigned flags = 0;
 1695 struct rtable *rth;
 1696 struct net_device *dev_out = NULL;
 1697 unsigned hash;
 1698 int free_res = 0;
 1699 int err;
 1700 u32 tos;

The function uses two important local variables: key is of struct rt_key, derived from the values
pointed to by oldkey and is used to specify the characteristics of the desired route;

 48 struct rt_key
 49 {
 50 __u32 dst; /* Destination IP address */
 51 __u32 src; /* Source IP address */
 52 int iif; /* Input interface index */
 53 int oif; /* Output interface index */
 54 #ifdef CONFIG_IP_ROUTE_FWMARK
 55 __u32 fwmark;
 56 #endif
 57 __u8 tos; /* Requested type of service */
 58 __u8 scope; /* Host, LAN, site, universe */
 59 };

1

The variable res has type struct fib_result and is later used in building the new routing cache entry.

 86 struct fib_result
 87 {
 88 unsigned char prefixlen;
 89 unsigned char nh_sel;
 90 unsigned char type;
 91 unsigned char scope;
 92 struct fib_info *fi;
 93 #ifdef CONFIG_IP_MULTIPLE_TABLES
 94 struct fib_rule *r;
 95 #endif
 96 };

The elements of the fib_result structure include:

prefixlen prefix length or equivalently the number of leading 1 bits in the subnet
mask

nh_sel next hop (output dev index). This actually appears under grep −r to
be one of the ever popular write only variables!

scope An indication of the distance to the destination IP address (e.g. host,
local network, site, universe). Higher scope values are more specific.

type type of address (LOCAL, UNICAST, BROADCAST, MULTICAST)
fi Pointer to the fib_info structure that contains protocol and hardware

information specific to an interface.
r Pointer tof a fib_rule structure used for policy based routing.

2

The fib_rule structure is defined in net/ipv4/fib_rules.c. This structure is the key element defining
the existence of a route with a given class of service between a specific source and destination
address. It is not used unless CONFIG_IP_MULTIPLE_TABLES has been defined.

 52 struct fib_rule
 53 {
 54 struct fib_rule *r_next;
 55 atomic_t r_clntref;
 56 u32 r_preference;
 57 unsigned char r_table;
 58 unsigned char r_action;
 59 unsigned char r_dst_len;
 60 unsigned char r_src_len;
 61 u32 r_src;
 62 u32 r_srcmask;
 63 u32 r_dst;
 64 u32 r_dstmask;
 65 u32 r_srcmap;
 66 u8 r_flags;
 67 u8 r_tos;
 68 #ifdef CONFIG_IP_ROUTE_FWMARK
 69 u32 r_fwmark;
 70 #endif
 71 int r_ifindex;
 72 #ifdef CONFIG_NET_CLS_ROUTE
 73 __u32 r_tclassid;
 74 #endif
 75 char r_ifname[IFNAMSIZ];
 76 int r_dead;
 77 };

3

The function ip_route_ouput_slow() begins by constructing the new routing key structure.
Manipulation of the tos field is somewhat strange. TOS related constants are defined as follows:

 23 #define IPTOS_TOS_MASK 0x1E
 24 #define IPTOS_TOS(tos) ((tos)&IPTOS_TOS_MASK)
 25 #define IPTOS_LOWDELAY 0x10
 26 #define IPTOS_THROUGHPUT 0x08
 27 #define IPTOS_RELIABILITY 0x04
 28 #define IPTOS_MINCOST 0x02

 151 #define IPTOS_RT_MASK (IPTOS_TOS_MASK & ~3)
 40 #define RTO_ONLINK 0x01

RTO_ONLINK is a flag that indicates the destination is no more than one hop away and reachable
via a link layer protocol. Thus, in line 1702 the input value of tos is being and’ed with 0x1d. Then
in line it is 1705 is and’ed with 0x1c. Presumably there is a reason for distinguishing tos and key.tos.

 1702 tos = oldkey−>tos & (IPTOS_RT_MASK | RTO_ONLINK);
 1703 key.dst = oldkey−>dst;
 1704 key.src = oldkey−>src;
 1705 key.tos = tos & IPTOS_RT_MASK;

The input interface identifier is forced to that of the loopback device. The variable loopback_dev is
an instance of struct net_device and is globally defined in drivers/net/Space.c. The value of the
ifindex field is a unique identifier assigned to the interface at initialization time. The output interface
identifier is copied from the oldkey structure.

 1706 key.iif = loopback_dev.ifindex;
 1707 key.oif = oldkey−>oif;

CONFIG_IP_ROUTE_FWMARK is an option to specify different route for packets with different
(netfilter) mark values.

 1708 #ifdef CONFIG_IP_ROUTE_FWMARK
 1709 key.fwmark = oldkey−>fwmark;
 1710 #endif

4

The value of key.scope is an indication of the distance from the destination. Here there are only two
possible choices, and they depend on the setting of RTO_ONLINK If RTO_ONLINK is set then the
scope must be RT_SCOPE_LINK. Otherwise it is RT_SCOPE_UNIVERSE. Thus the scope
attribute of the new key does reflect the setting of the RTO_ONLINK bit in the tos field of the old
key.

 1711 key.scope = (tos & RTO_ONLINK) ? RT_SCOPE_LINK:
 1712 RT_SCOPE_UNIVERSE;

As described more fully in the kernel comments below and subsequent data definitions it is clear that
a wider range of possible scopes is intended and that the higher the value of scope the more specific
the target routing domain.

 144 /* rtm_scope
 145
 146 Really not a scope, but sort of distance to the destination.
 147 NOWHERE are reserved for non−existing dests, HOST is our
 148 local addresses, LINK are dests on directly attached
 149 link and UNIVERSE is everywhere in the Universe.
 150
 151 Intermediate values are also possible f.e. interior routes
 152 could be assigned a value between UNIVERSE and LINK.
 153 */

RT_SCOPE_LINK, RT_SCOPE_UNIVERSE stand for on−link routes and global routes
respectively and are defined in include/linux/rtnetlink.h.

 155 enum rt_scope_t
 156 {
 157 RT_SCOPE_UNIVERSE=0,
 158 /* User defined values */
 159 RT_SCOPE_SITE=200,
 160 RT_SCOPE_LINK=253,
 161 RT_SCOPE_HOST=254,
 162 RT_SCOPE_NOWHERE=255
 163 };

5

CONFIG_IP_MULTIPLE_TABLES is an option that allows the Linux router to be able to take the
packet’s source address into account. (Normally, a router decides what to do with a received packet
based solely on the packet’s final destination address.)

The routing tables are referred to as "classes". Currently, the number of classes is limited to 255, of
which three classes are builtin1:

RT_CLASS_LOCAL = 255 − local interface addresses, broadcasts, nat addresses
RT_CLASS_MAIN = 254 − all normal routes are put here by default.
RT_CLASS_DEFAULT = 253 − If the ip_fib_model == 1, then normal default routes

are put there. If the ip_fib_model == 2, all gateway routes are
put there .

 1713 res.fi = NULL;

 1714 #ifdef CONFIG_IP_MULTIPLE_TABLES
 1715 res.r = NULL;
 1716 #endif

Check if the source address is defined, and if so determine its type. If the source address is a
MULTICAST, BADCLASS and ZERONET address (these macros are defined in include/linux/in.h),
return error.

 182 #define LOOPBACK(x)
 (((x) & htonl(0xff000000)) == htonl(0x7f000000))

 183 #define MULTICAST(x)
 (((x) & htonl(0xf0000000)) == htonl(0xe0000000))
 184 #define BADCLASS(x)

 (((x) & htonl(0xf0000000)) == htonl(0xf0000000))
 185 #define ZERONET(x)

 (((x) & htonl(0xff000000)) == htonl(0x00000000))
 186 #define LOCAL_MCAST(x)

(((x) & htonl(0xFFFFFF00)) == htonl(0xE0000000))

 1718 if (oldkey−>src) {
 1719 err = −EINVAL;
 1720 if (MULTICAST(oldkey−>src) ||
 1721 BADCLASS(oldkey−>src) ||
 1722 ZERONET(oldkey−>src))
 1723 goto out;

1 http://lxr.linux.no/source/Documentation/networking/policy−routing.txt

6

The ip_dev_find() function looks up the IP source address in the local table and returns a pointer to
the struct net_device associated with the source address. This function is defined in
net/ipv4/fib_frontend.c.

 1725 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
 1726 dev_out = ip_dev_find(oldkey−>src);

The input parameter here is the source IP address associated with the route being setup. Note that
the address is subsequently put into the dst element of the new key structure that is built.

 145 struct net_device * ip_dev_find(u32 addr)
 146 {
 147 struct rt_key key;
 148 struct fib_result res;
 149 struct net_device *dev = NULL;
 150
 151 memset(&key, 0, sizeof(key));
 152 key.dst = addr;
 153 #ifdef CONFIG_IP_MULTIPLE_TABLES
 154 res.r = NULL;
 155 #endif
 156

The variable local_table is a reference to the statically defined local table.

ip_fib.h:
#define local_table (fib_tables[RT_TABLE_LOCAL])

 157 if (!local_table ||
local_table−>tb_lookup(local_table, &key, &res)) {

 158 return NULL;
 159 }

7

The call to local_table−>tb_lookup() is a reference to the fn_hash_lookup() function. This function
is used to determine if the destination entity identified by key exists in the specified table. All the
fib_tables are searched by zone where a routing zone is the set of routing destinations that have the
same length prefix (or equivalently netmask). The fn_hash_lookup() searches the specified table,
starting with the most specific zone netmask looking for a match. The most specific existing zone is
pointed by the fn_zone_list variable.

 268 static int
 269 fn_hash_lookup (struct fib_table *tb,

const struct rt_key *key, struct fib_result *res)
 270 {
 271 int err;
 272 struct fn_zone *fz;
 273 struct fn_hash *t = (struct fn_hash*)tb−>tb_data;
 274

This outer loop processes every non−empty zone associated with the fib_table in longest prefix first
order.

 275 read_lock(&fib_hash_lock);
 276 for (fz = t−>fn_zone_list; fz; fz = fz−>fz_next) {
 277 struct fib_node *f;
 278 fn_key_t k = fz_key(key−>dst, fz);

The fz_key() function, defined in fib_hash.c, builds a test key by and−ing the address with the zone’s
netmask. The structures fn_key_t and fn_hash_idx_t are simply unsigned integers representing IP
prefixes and hash table indices respectively.

 60 typedef struct {
 61 u32 datum;
 62 } fn_key_t;

 64 typedef struct {
 65 u32 datum;
 66 } fn_hash_idx_t;

 123 static __inline__ fn_key_t fz_key(u32 dst, struct
fn_zone *fz)

 124 {
 125 fn_key_t k;
 126 k.datum = dst & FZ_MASK(fz);
 127 return k;
 128 }

FZ_MASK is a macro defined in fib_hash.c

 97 #define FZ_MASK(fz) ((fz)−>fz_mask)

8

On returning to fn_hash_lookup(), this inner loop traverses the list of fib_node structures associated
with the hash bucket of the routing key searching for the first key match. To initiate this process
fz_chain() is called to retrieve the address of the first fib_node in the chain. It performs the hash
function fn_hash() and ANDs this value with the zone’s fz_hashmask to get an index into the zone’s
hash table of nodes. The syntax of this function is a bit dense. Note that fn_hash returns
fn_hash_idx_t which was shown above to be a ‘‘structure’’ consisting of a single unsigned int
member called datum. That value is used as an index into the hash table structure associated with
the routing zone yielding the required pointer to the struct fib_node.

 280 for (f = fz_chain(k, fz); f; f = f−>fn_next) {

 135 static __inline__ struct fib_node * fz_chain(fn_key_t
key, struct fn_zone *fz)

 136 {
 137 return fz−>fz_hash[fn_hash(key, fz).datum];
 138 }
 110 static __inline__ fn_hash_idx_t fn_hash(fn_key_t key,

struct fn_zone *fz)
 111 {
 112 u32 h = ntohl(key.datum)>>(32 − fz−>fz_order);
 113 h ^= (h>>20);
 114 h ^= (h>>10);
 115 h ^= (h>>5);
 116 h &= FZ_HASHMASK(fz);

FZ_HASHMASK is a macro defined in fib_hash.c

 93 #define FZ_HASHMASK(fz) ((fz)−>fz_hashmask)

fn_hash_idx_t is a structure containing the address as its element.

 64 typedef struct {
 65 u32 datum;
 66 } fn_hash_idx_t;

 117 return *(fn_hash_idx_t*)&h;
 118 }

9

The first action of the inner loop is to compare search key with the key of the struct fib_node. Recall
that the variable k is an instance of fn_key_t, a structure of the single element datum, whose value
was previously set to the target IP address anded with the netmask associated with the zone. From
this we can infer that the value of f−>fn_key is the network address or CIDR network prefix
associated with the routing table entity associated with this node. The nodes on any hash queue are
sorted in decreasing order by prefix. Therefore, if they do not match and if the search key value is
greater than that of the node key, the search continues on to the next node.

 281 if (!fn_key_eq(k, f−>fn_key))
{

 282 if (fn_key_leq(k, f−>fn_key))
 283 break;
 284 else
 285 continue;
 286 }

Arriving here implies that there has been a match. CONFIG_IP_ROUTE_TOS makes use of TOS
value as routing key and so if there is a tos associated with the fib_node and it is not equal to the tos
of the key, the match is discarded and the search continues.

 287 #ifdef CONFIG_IP_ROUTE_TOS
 288 if (f−>fn_tos && f−>fn_tos != key−>tos)
 289 continue;
 290 #endif

Update and test the state information of the fib_node. Zombie nodes are considered non−usable and
likely relate to deleted routes or dead interfaces. Very little state information is present in fib_notes.
Only 2 bits are defined:

 80 #define FN_S_ZOMBIE 1
 81 #define FN_S_ACCESSED 2

 291 f−>fn_state |= FN_S_ACCESSED;
 292
 293 if (f−>fn_state & FN_S_ZOMBIE)
 294 continue;

Recall that higher values of scope means more specific or constrained routing. Thus the node scope
is required to be at least as specific as the requested route scope. If the fib_node scope is less than
that of the scope of the key, then this node is also not usable.

 295 if (f−>fn_scope < key−>scope)
 296 continue;
 297

10

Finally the fib_semantic_match() function is called to ensure that this fib_node is usable within the
semantic constraints imposed by the route key.

 298 err = fib_semantic_match(f−>fn_type,

FIB_INFO(f), key, res);

The fib_semantic_match() function is defined in net/ipv4/fib_semantics.c. Its mission is to ensure
that the candidate fib_node appears to represent an acceptable route. The tests include ensuring that
the associated fib_info’s view of the next hop is that it is alive, the fib_nh’s view of the next hop is
that its alive, and that if the output interface is specified in the routing key, it is the same interface as
the one associated with the next hop structure.

 569 int
 570 fib_semantic_match (int type, struct fib_info *fi, const

struct rt_key *key, struct fib_result *res)
 571 {
 572 int err = fib_props[type].error;
 573
 574 if (err == 0) {

If the fib_info structure indicates that the next hop is dead, then failure is returned.

 575 if (fi−>fib_flags & RTNH_F_DEAD)
 576 return 1;
 577

The fib_info structure is connected to the results structure.

 578 res−>fi = fi;
 579
 580 switch (type) {
 581 #ifdef CONFIG_IP_ROUTE_NAT
 582 case RTN_NAT:
 583 FIB_RES_RESET(*res);
 584 atomic_inc(&fi−>fib_clntref);
 585 return 0;
 586 #endif

Only the NAT type route is distinguished for the purposes of route semantics.

 587 case RTN_UNICAST:
 588 case RTN_LOCAL:
 589 case RTN_BROADCAST:
 590 case RTN_ANYCAST:
 591 case RTN_MULTICAST:

11

Check if a next hop is feasible from this node. The macros used in this loop depend upon whether or
not multipath routing is enabled. If not, there can be only one next hop associated with a fib_info
structure.

57 #ifdef CONFIG_IP_ROUTE_MULTIPATH
58
59 #define for_nexthops(fi) { int nhsel; const struct fib_nh * nh; \
60 for (nhsel=0, nh = (fi)−>fib_nh; nhsel < (fi)−>fib_nhs; nh++, nhsel++)
61
65 #else /* CONFIG_IP_ROUTE_MULTIPATH */
66
67 /* Hope, that gcc will optimize it to get rid of dummy loop */
68
69 #define for_nexthops(fi) {int nhsel=0;const struct fib_nh *nh = (fi)−>fib_nh;
\
70 for (nhsel=0; nhsel < 1; nhsel++)
71
75 #endif /* CONFIG_IP_RO

 592 for_nexthops(fi) {
 593 if (nh−>nh_flags & RTNH_F_DEAD)
 594 continue;

If the route key requires a specific output interface and that is not the output interface associated with
this fib_nh then the route is not usable. The break is taken if the route is usable.

 595 if (!key−>oif || key−>oif == nh−>nh_oif)
 596 break;
 597 }

The CONFIG_IP_ROUTE_MULTIPATH option allows the routing tables to specify alternative
paths to travel for a given packet. The router considers all these paths to be of equal "cost" and
chooses one of them in a non−deterministic fashion when selecting a route. How is this done??

 598 #ifdef CONFIG_IP_ROUTE_MULTIPATH
 599 if (nhsel < fi−>fib_nhs) {
 600 res−>nh_sel = nhsel;
 601 atomic_inc(&fi−>fib_clntref);
 602 return 0;
 603 }
 604 #else

For non multi−path routing, this is the success return point. The loop will have been exited via the
break and so nhsel will remain 0. The reference counter of the fib_info structure is incremented here.

 605 if (nhsel < 1) {
 606 atomic_inc(&fi−>fib_clntref);
 607 return 0;
 608 }
 609 #endif

12

This endfor is misleading. The actual loop ended at line 597. This closes the block in which the
local variables preceeding the for loop are declared.

 610 endfor_nexthops(fi);

Falling out of the loop implies no fib_nh with acceptable semantics was found.

 611 res−>fi = NULL;
 612 return 1;
 613 default:
 614 res−>fi = NULL;
 615 printk(KERN_DEBUG "impossible 102\n");
 616 return −EINVAL;
 617 }
 618 }
 619 return err;
 620 }

This is the point of return from fib_semantic_match() to fn_hash_lookup(). If the the source address
was found to be acceptable, the res structure was filled with the type and scope elements copied
from the fib_node structure and the prefix length is copied from the fn_zone structure.

 299 if (err == 0) {
 300 res−>type = f−>fn_type;
 301 res−>scope = f−>fn_scope;
 302 res−>prefixlen = fz−>fz_order;
 303 goto out;
 304 }
 305 if (err < 0)
 306 goto out;
 307 }
 308 }
 309 err = 1;
 310 out:
 311 read_unlock(&fib_hash_lock);
 312 return err;
 313 }
 314

13

Here control returns to ip_find_dev(), since the source address is being processed, it is necessary that
the returned route type be RTN_LOCAL. This seems like one convoluted way to find if a host owns
a particular IP address. If the route is not RTN_LOCAL, a jump is made to the tag out bypassing the
code which normally sets up the return value, dev. The value of dev was initialized to NULL, and a
return value of NULL will cause ip_route_output_slow to return failure.

 160 if (res.type != RTN_LOCAL)
 161 goto out;

FIB_RES_DEV, a macro defined in include/net/ip_fib.h, extracts the struct netdevice pointer from
the fib_info pointer contained in the results structure. Note that dev−>refcnt is incremented here.
Where the corresponding decrement occurs is not clear at present.

 113 #define FIB_RES_DEV(res) (FIB_RES_NH(res).nh_dev)
 106 #define FIB_RES_NH(res) ((res).fi−>fib_nh[0])

 162 dev = FIB_RES_DEV(res);
 163 if (dev)
 164 atomic_inc(&dev−>refcnt);
 165

The fib_res_put() function triggers a set of events that is not well understood at present.

 166 out:
 167 fib_res_put(&res);
 168 return dev;
 169 }

What is not well understood here is how routes dynamically become ‘‘dead’’ or come to have
reference counts of 0. The best guess at the moment is that the fib_info structure is held by all but its
creator for a very short interval of time. Nevertheless, it would be possible that whatever owned and
normally keeps the reference count at 1 tried to delete the route while we owned it here. Thus when
we release it, it really should go away, but qui sait.

 268 static inline void fib_res_put(struct fib_result *res)
 269 {
 270 if (res−>fi)
 271 fib_info_put(res−>fi);
 272 #ifdef CONFIG_IP_MULTIPLE_TABLES
 273 if (res−>r)
 274 fib_rule_put(res−>r);
 275 #endif
 276 }

14

The fib_clntref is a reference counter and when its value reaches zero, the struct fib_info is deleted.
In this context fib_clntref was incremented in the function fib_semantic_match(). The
atomic_dec_and_test() function returns true if the value is zero.

 262 static inline void fib_info_put(struct fib_info *fi)
 263 {
 264 if (atomic_dec_and_test(&fi−>fib_clntref))
 265 free_fib_info(fi);
 266 }

 106 void free_fib_info(struct fib_info *fi)
 107 {
 108 if (fi−>fib_dead == 0) {
 109 printk("Freeing alive fib_info %p\n", fi);
 110 return;
 111 }

Unless multipath routing is enabled, change_nexthops() will cause the enclosed block to be executed
exactly one time and this fib_info structure’s claim on the net_device will be dropped.

 112 change_nexthops(fi) {
 113 if (nh−>nh_dev)
 114 dev_put(nh−>nh_dev);
 115 nh−>nh_dev = NULL;
 116 } endfor_nexthops(fi);
 117 fib_info_cnt−−;
 118 kfree(fi);
 119 }

Release a fib_rule structure.

 152 void fib_rule_put(struct fib_rule *r)
 153 {
 154 if (atomic_dec_and_test(&r−>r_clntref)) {
 155 if (r−>r_dead)
 156 kfree(r);
 157 else
 158 printk("Freeing alive rule %p\n", r);
 159 }
 160 }

15

Finally return is made from ip_find_dev() to ip_route_output_slow(). Recall that we only embarked
upon this path if the source IP address was not NULL. If the value of dev_out is NULL, then there is
no usable network interface associated with the source IP address. The comment below discusses
why it is not necessary that the device found here actually map to the output interface specified by
the caller. He actually probably means key.oif == dev_out−>oif.

 1727 if (dev_out == NULL)
 1728 goto out;
 1729
 1730 /* I removed check for oif == dev_out−>oif here.
 1731 It was wrong by three reasons:
 1732 1. ip_dev_find(saddr) can return wrong iface, if saddr
 1733 is assigned to multiple interfaces.
 1734 2. Moreover, we are allowed to send packets with saddr
 1735 of another iface. −−ANK
 1736 */

Since oif == 0 means unspecified, what is happening here is a coerced conversion of a multicast and
broadcast destination addresses to use the output interface associated with the device that was
returned. In addition to the factors discussion below, it is also the case that proper multicast
addresses must be associated with a specific interface.

 1738 if (oldkey−>oif == 0
 1739 && (MULTICAST(oldkey−>dst) ||

oldkey−>dst == 0xFFFFFFFF)) {
 1740 /* Special hack: user can direct multicasts
 1741 and limited broadcast via necessary interface
 1742 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
 1743 This hack is not just for fun, it allows
 1744 vic,vat and friends to work.
 1745 They bind socket to loopback, set ttl to zero
 1746 and expect that it will work.
 1747 From the viewpoint of routing cache they are broken,
 1748 because we are not allowed to build multicast path
 1749 with loopback source addr (look, routing cache
 1750 cannot know, that ttl is zero, so that packet
 1751 will not leave this host and route is valid).
 1752 Luckily, this hack is good workaround.
 1753 */
 1754
 1755 key.oif = dev_out−>ifindex;
 1756 goto make_route;
 1757 }

Release the device by invoking the dev_put() function defined in include/linux/netdevice.h

 1758 if (dev_out)
 1759 dev_put(dev_out);
 1760 dev_out = NULL;
 1761 } /* end if (oldkey−>src) */

16

If an output interface index is specified, attempt to retrieve a pointer to the associated struct
net_device. A return value of NULL indicates the device is not found. If the device exists, its
reference count is incremented, and the pointer is safe until dev_put is called to release it.

 1762 if (oldkey−>oif) {
 1763 dev_out = dev_get_by_index(oldkey−>oif);
 1764 err = −ENODEV;
 1765 if (dev_out == NULL)
 1766 goto out;

The IPV4 specific data is retrieved by the in_dev_get() function which is defined in
include/linux/inetdevice.h. This call returns the void *ip_ptr element of the net_device structure.
This pointer points to an instance of struct in_device. Each net_device that supports IPV4 also has
an associated struct in_device that carries the IPV4 dependencies of the device layer. An important
element of the in_device is the ifa_list pointer. This pointer is the root of a list of struct ifa_list
elements.

 1767 if (__in_dev_get(dev_out) == NULL) {
 1768 dev_put(dev_out);
 1769 goto out; /* Wrong error code */
 1770 }

 133 __in_dev_get(const struct net_device *dev)
 134 {
 135 return (struct in_device*)dev−>ip_ptr;
 136 }
 137

 26 struct in_device
 27 {
 28 struct net_device *dev;
 29 atomic_t refcnt;
 30 rwlock_t lock;
 31 int dead;
 32 struct in_ifaddr *ifa_list; /* IP ifaddr chain */
 33 struct ip_mc_list *mc_list; /* IP mcst filter chain */
 34 unsigned long mr_v1_seen;
 35 struct neigh_parms *arp_parms;
 36 struct ipv4_devconf cnf;
 37 };

17

Each physical net_device may be assigned alias IP addresses and labels (eth0:1 eth0:2, .. etc). Each
alias is represented by an instance of the struct in_ifaddr . The distinction between ifa_local and
ifa_address is not well understood. Empirical analysis of ‘‘normal’’ network configurations fails to
disclose any instances in which ifa_local and ifa_address differ.

 60 struct in_ifaddr
 61 {
 62 struct in_ifaddr *ifa_next;
 63 struct in_device *ifa_dev;
 64 u32 ifa_local;
 65 u32 ifa_address;
 66 u32 ifa_mask;
 67 u32 ifa_broadcast;
 68 u32 ifa_anycast;
 69 unsigned char ifa_scope;
 70 unsigned char ifa_flags;
 71 unsigned char ifa_prefixlen;
 72 char ifa_label[IFNAMSIZ];
 73 };

When a new interface is created by the inet_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh,
void *arg) function in net/ipv4/devinet, the two addresses are set to the values passed in via the
netlinks protocol message (don’t ask).

 412 if (rta[IFA_ADDRESS−1] == NULL)
 413 rta[IFA_ADDRESS−1] = rta[IFA_LOCAL−1];
 414 memcpy(&ifa−>ifa_local, RTA_DATA(rta[IFA_LOCAL−1]), 4);
 415 memcpy(&ifa−>ifa_address,RTA_DATA(rta[IFA_ADDRESS−1]),4);
 416 ifa−>ifa_prefixlen = ifm−>ifa_prefixlen;

18

Continuing along in the code block in which the oif index was explicitly specified, if the destination
address is a LOCAL multicast address or broadcast address, retreive the IP address of the output
device. Recall that dev_out is a pointer to the struct net_device associated with the explicitly
specified output interface. The call to inet_select_address() will return the ifa_local associated with
the first interface that is found associated with the net_device that has scope no more restrictive
(numerically less than or equal to) than LINK. The use of RT_SCOPE_LINK seems a bit unusual
here. It will turn out that the scope is used only for LOCAL MCAST and BCAST. For UCAST
destinations the scope will be set to RT_SCOPE_HOST when inet_select_address() is called.

 1772 if (LOCAL_MCAST(oldkey−>dst)||oldkey−>dst ==
0xFFFFFFFF) {

 1773 if (!key.src)
 1774 key.src = inet_select_addr(dev_out, 0,
 1775 RT_SCOPE_LINK);
 1776 goto make_route;
 1777 }

 181 /* Some random defines to make it easier in the kernel.. */
 182 #define LOOPBACK(x) (((x) & htonl(0xff000000)) == htonl(0x7f000000))
 183 #define MULTICAST(x) (((x) & htonl(0xf0000000)) == htonl(0xe0000000))
 184 #define BADCLASS(x) (((x) & htonl(0xf0000000)) == htonl(0xf0000000))
 185 #define ZERONET(x) (((x) & htonl(0xff000000)) == htonl(0x00000000))
 186 #define LOCAL_MCAST(x) (((x) & htonl(0xFFFFFF00)) == htonl(0xE0000000))

When the destination address is LOCAL multcast or broadcast, the inet_select_addr() function,
defined in net/ipv4/devinet.c, returns the local address associated with the specified output device.
In this case dev points to the output device, the dst address is NULL and the scope is
RT_SCOPE_LINK. The return value is the selected IP address or is NULL upon failure.

 718 u32 inet_select_addr(const struct net_device *dev, u32
dst, int scope)

 719 {
 720 u32 addr = 0;
 721 struct in_device *in_dev;
 722
 723 read_lock(&inetdev_lock);
 724 in_dev = __in_dev_get(dev);
 725 if (in_dev == NULL) {
 726 read_unlock(&inetdev_lock);
 727 return 0;
 728 }
 729

19

At this point in_dev points to a valid in_device structure. The for_primary_ifa macro runs the
interface address chain associated with the in_device. Recall that routing scope values are ordered
with the most specific scope (i.e. this host) having the highest value. The scope passed in was
RT_SCOPE_LINK. Thus interfaces having a more specific address scope (HOST or NOWHERE)
are rejected (for reasons, yet unknown). The address matching logic is with respect to the network
mask associated with the in_ifaddr structure. In practice it would appear that only 2 distinct values
of scope are assigned to interfaces. Scope 0 (UNIVERSE) is assigned to physical interfaces and
scope 254 (HOST) to the loopback interface, lo. Thus in the scope matching logic below, physical
interfaces are always acceptable and the loopback interface is acceptable only if the input scope is
also HOST.

 730 read_lock(&in_dev−>lock);
 731 for_primary_ifa(in_dev) {
 732 if (ifa−>ifa_scope > scope)
 733 continue;

The value of dst that was passed in was 0. Therefore !dst is true and the value of addr is set to the
ifa_local field of the interface. Note that the address matching test is against ifa_address, but if a
match occurs addr is set to ifa_local.

 88 static __inline__ int inet_ifa_match(u32 addr, struct
in_ifaddr *ifa)

 89 {
 90 return !((addr^ifa−>ifa_address)&ifa−>ifa_mask);
 91 }

 734 if (!dst || inet_ifa_match(dst, ifa)) {
 735 addr = ifa−>ifa_local;
 736 break;
 737 }
 738 if (!addr)
 739 addr = ifa−>ifa_local;
 740 } endfor_ifa(in_dev);
 741 read_unlock(&in_dev−>lock);
 742 read_unlock(&inetdev_lock);
 743

For the control path we are investingating it appears that addr should always be non−zero here and
thus a return should take place.

 744 if (addr)
 745 return addr;

20

If control should reach here, it indicates that dst was non−zero and didn’t match the ifa_address field
of any interface address structure associated with the device. dev_base is a global variable pointing
to the list of all instances of struct net_device. Here the selection criterion appears to be finding an
interface whose scope is not LINK and whose scope is numerically less than or equal to the scope
that was passed in.

 746
 747 /* Not loopback addresses on loopback should be preferred
 748 in this case. It is importnat that lo is the 1st intf
 749 in dev_base list.
 750 */
 751 read_lock(&dev_base_lock);
 752 read_lock(&inetdev_lock);
 753 for (dev = dev_base; dev; dev = dev−>next) {
 754 if ((in_dev=__in_dev_get(dev)) == NULL)
 755 continue;
 756
 757 read_lock(&in_dev−>lock);
 758 for_primary_ifa(in_dev) {
 759 if (ifa−>ifa_scope != RT_SCOPE_LINK &&
 760 ifa−>ifa_scope <= scope) {
 761 read_unlock(&in_dev−>lock);
 762 read_unlock(&inetdev_lock);
 763 read_unlock(&dev_base_lock);
 764 return ifa−>ifa_local;
 765 }
 766 } endfor_ifa(in_dev);
 767 read_unlock(&in_dev−>lock);
 768 }
 769 read_unlock(&inetdev_lock);
 770 read_unlock(&dev_base_lock);
 771

Return failure if an acceptable address cannot be found.

 772 return 0;
 773 }
 774

21

Well wasn’t that an interesting excursion! Recall that this code block was executed only if the
routing key specified an output interface and that the objective was to find an IP source address that
is in some sense compatible with previously selected output device. We just dispensed with local
multicast and broadcast source addresses. If the destination is general MULTICAST, then the
address is selected from the output device using the key’s scope. If the destination is unspecified, the
scope RT_SCOPE_HOST is passed in.

 1778 if (!key.src) {
 1779 if (MULTICAST(oldkey−>dst))
 1780 key.src = inet_select_addr(dev_out, 0,
 1781 key.scope);
 1782 else if (!oldkey−>dst)
 1783 key.src = inet_select_addr(dev_out, 0,
 1784 RT_SCOPE_HOST);
 1785 }
 1786 } /* if (oldkey−>oif) */
 1787

If the destination address is unspecified, the destination is set to the source address (which is
presumably on this machine) . If the source is also NULL then they are both set to the loopback
address.

 1788 if (!key.dst) {
 1789 key.dst = key.src;

 1790 if (!key.dst)
 1791 key.dst= key.src = htonl(INADDR_LOOPBACK);
 1792 if (dev_out)
 1793 dev_put(dev_out);

Use loopback device for sending packet to this machine.

 1794 dev_out = &loopback_dev;
 1795 dev_hold(dev_out);
 1796 key.oif = loopback_dev.ifindex;
 1797 res.type = RTN_LOCAL;
 1798 flags |= RTCF_LOCAL;
 1799 goto make_route;
 1800 }

22

Finally, the function fib_lookup() defined in include/net/ip_fib.h is invoked to try to resolve the
destination address.

 1802 if (fib_lookup(&key, &res)) {
 1803 res.fi = NULL;

Since the destination may be on this host as well as elsewhere in the Internet, the fib_lookup()
function calls tb_lookup() on both the local table and the main table. Both tb_lookup functions
resolve to fn_hash_lookup which was encountered earlier. Since fn_hash_lookup() returns 0 on
success and non−zero on failure. The operation fails only if both lookups fail. Theoretically, at
least, the lookup should not succeed in both tables but if it does, it would appear that the main table
has precedence.

 155 static inline int fib_lookup(const struct rt_key *key,
struct fib_result *res)

 156 {
 157 if (local_table−>tb_lookup(local_table, key, res) &&
 158 main_table−>tb_lookup(main_table, key, res))
 159 return −ENETUNREACH;
 160 return 0;
 161 }

Falling into this implies that the fib_lookup failed. Check to see if an output interface was specified
(haven’t we been here before??) and, if so, get the source address from the device.

 1804 if (oldkey−>oif) {

 1805 /* Apparently, routing tables are wrong. Assume,
 1806 that the destination is on link.
 1807
 1808 WHY? DW.
 1809 Because we are allowed to send to iface
 1810 even if it has NO routes and NO assigned
 1811 addresses. When oif is specified, routing
 1812 tables are looked up with only one purpose:
 1813 to catch if destination is gatewayed, rather than
 1814 direct. Moreover, if MSG_DONTROUTE is set,
 1815 we send packet, ignoring both routing tables
 1816 and ifaddr state. −−ANK

 1819 We could make it even if oif is unknown,
 1820 likely IPv6, but we do not.
 1821 */
 1822
 1823 if (key.src == 0)
 1824 key.src = inet_select_addr(dev_out, 0,
 1825 RT_SCOPE_LINK);
 1826 res.type = RTN_UNICAST;
 1827 goto make_route;
 1828 }

23

 1829 if (dev_out)
 1830 dev_put(dev_out);
 1831 err = −ENETUNREACH;
 1832 goto out;
 1833 }
 1834 free_res = 1;
 1835

probably some error occurred during lookup ??

 1836 if (res.type == RTN_NAT)
 1837 goto e_inval;
 1838

This packet is routed locally (RTN_LOCAL), so destination and source are the same.

 1839 if (res.type == RTN_LOCAL) {
 1840 if (!key.src)
 1841 key.src = key.dst;
 1842 if (dev_out)
 1843 dev_put(dev_out);
 1844 dev_out = &loopback_dev;
 1845 dev_hold(dev_out);
 1846 key.oif = dev_out−>ifindex;

Release reference into FIB table by calling fib_info_put().

 1847 if (res.fi)
 1848 fib_info_put(res.fi);
 1849 res.fi = NULL;
 1850 flags |= RTCF_LOCAL;
 1851 goto make_route;
 1852 }
 1853

 1854 #ifdef CONFIG_IP_ROUTE_MULTIPATH
 1855 if (res.fi−>fib_nhs > 1 && key.oif == 0)
 1856 fib_select_multipath(&key, &res);
 1857 else
 1858 #endif

24

If the prefix length is 0 (implying default route), and the type is UNICAST, and no output interface
index was specified then its necessary to select among (possibly multiple) default routes.

 1859 if(!res.prefixlen && res.type == RTN_UNICAST && !key.oif)
 1860 fib_select_default(&key, &res);

The fib_select_default() function is defined in include/net/ip_fib.h. It appears that it may be a no
operation if the if conditions are false. The FIB_RES_GW() macro will return the nh_gw of the next
hop structure. As noted earlier three different entities, the node, the next hop, and the interface all
have scope values. The value of nh_scope appears to be the most specific, having the value 254 for
all local interface entries and local net entries in the main table. It does appear to have a 253 value
for those table entries that do specify routing through a gateway either to a remote net or the default
route.

 163 static inline void fib_select_default(const struct rt_key
*key, struct fib_result *res)

 164 {
 165 if (FIB_RES_GW(*res) &&

FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
 166 main_table−>tb_select_default(main_table, key, res);
 167 }

This function calls the main table’s tb_select_default() which is a reference to the function
fn_hash_select_default() defined in net/ipv4/fib_hash.c.

 340 static void
 341 fn_hash_select_default(struct fib_table *tb,

const struct rt_key *key, struct fib_result *res)
 342 {
 343 int order, last_idx;
 344 struct fib_node *f;
 345 struct fib_info *fi = NULL;
 346 struct fib_info *last_resort;
 347 struct fn_hash *t = (struct fn_hash*)tb−>tb_data;
 348 struct fn_zone *fz = t−>fn_zones[0];

fz points to the default netmask (fn_zones[0]). If that zone list is empty, there are no default routes
and there is no more that can be done.

 349
 350 if (fz == NULL)
 351 return;
 352
 353 last_idx = −1;
 354 last_resort = NULL;
 355 order = −1;
 356
 357 read_lock(&fib_hash_lock);

25

Iterate through all the nodes for the order zero zone. Needless to say this implies the existence of
more than one default route. To successfully find something here would require finding a nh_scope
of RT_SCOPE_LINK which we have not seen in our examples.

 358 for (f = fz−>fz_hash[0]; f; f = f−>fn_next) {
 359 struct fib_info *next_fi = FIB_INFO(f);
 360
 361 if ((f−>fn_state & FN_S_ZOMBIE) ||
 362 f−>fn_scope != res−>scope ||
 363 f−>fn_type != RTN_UNICAST)
 364 continue;
 365
 366 if (next_fi−>fib_priority > res−>fi−>fib_priority)
 367 break;
 368 if (!next_fi−>fib_nh[0].nh_gw ||

next_fi−>fib_nh[0].nh_scope!= RT_SCOPE_LINK)
 369 continue;
 370 f−>fn_state |= FN_S_ACCESSED;
 371
 372 if (fi == NULL) {
 373 if (next_fi != res−>fi)
 374 break;
 375 } else if (!fib_detect_death

(fi,order,&last_resort, &last_idx)) {

fib_detect_death() checks whether the route (checking all nexthops) contains alive paths and whether
the route can be used as last resort if there are no valid alternative routes in the group.

 317 static int fib_detect_death(struct fib_info *fi, int order,
 318 struct fib_info **last_resort, int *last_idx)
 319 {
 320 struct neighbour *n;
 321 int state = NUD_NONE;
 322
 323 n = neigh_lookup(&arp_tbl,&fi−>fib_nh[0].nh_gw,

fi−>fib_dev);

neigh_lookup() function is defined in net/core/neighbour.c. This function gets the physical address of
the neighbour by matching the IP address of the search key with the one in the table.

 267 struct neighbour *neigh_lookup (struct neigh_table
*tbl, const void *pkey,

 268 struct net_device *dev)
 269 {
 270 struct neighbour *n;
 271 u32 hash_val;
 272 int key_len = tbl−>key_len;
 273
 274 hash_val = tbl−>hash(pkey, dev);

26

tbl−>hash() is a reference to arp_hash() function defined in net/ipv4/arp.c. This function takes the
IP address of the neighbor and the associated device and returns a hash value that is used as an index
for the hash buckets of the arp table.

214 static u32 arp_hash(const void *pkey, const struct net_device
*dev)

 215 {
 216 u32 hash_val;
 217
 218 hash_val = *(u32*)pkey;
 219 hash_val ^= (hash_val>>16);
 220 hash_val ^= hash_val>>8;
 221 hash_val ^= hash_val>>3;
 222 hash_val = (hash_val^dev−>ifindex)&NEIGH_HASHMASK;
 223
 224 return hash_val;
 225 }

On return to neigh_lookup the search proceeds.

 275
 276 read_lock_bh(&tbl−>lock);
 277 for (n = tbl−>hash_buckets[hash_val]; n; n = n−>next) {
 278 if (dev == n−>dev &&
 279 memcmp(n−>primary_key, pkey, key_len) == 0) {
 280 neigh_hold(n);
 281 break;
 282 }
 283 }
 284 read_unlock_bh(&tbl−>lock);
 285 return n;
 286 }

After returning from neigh_lookup() that returns a pointer to an entry in the neighbour table, the state
of the neighbor is checked.

 324 if (n) {
 325 state = n−>nud_state;
 326 neigh_release(n);
 327 }
 328 if (state==NUD_REACHABLE)
 329 return 0;
 330 if ((state & NUD_VALID) && order != fn_hash_last_dflt)
 331 return 0;
 332 if ((state & NUD_VALID) || (*last_idx<0 && order >

fn_hash_last_dflt)) {
 334 *last_resort = fi;
 335 *last_idx = order;
 336 }
 337 return 1;
 338 }

27

We return from fib_detect_death() into fib_select_default()

 376 if (res−>fi)
 377 fib_info_put(res−>fi);
 378 res−>fi = fi;
 379 atomic_inc(&fi−>fib_clntref);
 380 fn_hash_last_dflt = order;
 381 goto out;
 382 }
 383 fi = next_fi;
 384 order++;
 385 }
 386

 387 if (order<=0 || fi==NULL) {
 388 fn_hash_last_dflt = −1;
 389 goto out;
 390 }
 391
 392 if (!fib_detect_death(fi, order, &last_resort,

&last_idx)) {
 393 if (res−>fi)
 394 fib_info_put(res−>fi);
 395 res−>fi = fi;
 396 atomic_inc(&fi−>fib_clntref);
 397 fn_hash_last_dflt = order;
 398 goto out;
 399 }
 400
 401 if (last_idx >= 0) {
 402 if (res−>fi)
 403 fib_info_put(res−>fi);
 404 res−>fi = last_resort;
 405 if (last_resort)
 406 atomic_inc(&last_resort−>fib_clntref);
 407 }
 408 fn_hash_last_dflt = last_idx;
 409 out:
 410 read_unlock(&fib_hash_lock);
 411 }

28

Finally, back in the main line of ip_route_output_slow() a check is made to see if the source IP
address remains NULL.

 1861
 1862 if (!key.src)

If so an attempt is made to derive the source address from the fib_prefsrc field of the fib_info
structure. If that field is also NULL then our old friend inet_select_addr() is asked to recover it from
the net_device and nh_gw parameters. This makes no sense to me because the value of nh_gw
should be an IP address that is owned by a different host!

 1863 key.src = FIB_RES_PREFSRC(res);

FIB_RES_PREFSRC is a macro defined in include/net/ip_fib.h

 111 #define FIB_RES_PREFSRC(res)((res).fi−>fib_prefsrc ? :
__fib_res_prefsrc(&res))

 624 u32 __fib_res_prefsrc(struct fib_result *res)
 625 {
 626 return inet_select_addr(FIB_RES_DEV(*res),

FIB_RES_GW(*res), res−>scope);
 627 }

If a net device is held in dev_out, release it here.

 1864
 1865 if (dev_out)
 1866 dev_put(dev_out);

Set the value of key.oif from the net_device pointed to by the fib_info structure than lives in the res
structure.

 1867 dev_out = FIB_RES_DEV(res);
 1868 dev_hold(dev_out);
 1869 key.oif = dev_out−>ifindex;

29

Now we are ready to create the route and add it to the route cache. After filling in the appropriate
data, we determine the hash id and install the new route in the cache.

First ensure that if the source address is a loopback address then the selected output device carries the
IFF_LOOPBACK flag. Couldn’t this have been done earlier???

 1871 make_route:
 1872 if (LOOPBACK(key.src) &&

!(dev_out−>flags&IFF_LOOPBACK))
 1873 goto e_inval;
 1874
 1875 if (key.dst == 0xFFFFFFFF)
 1876 res.type = RTN_BROADCAST;
 1877 else if (MULTICAST(key.dst))
 1878 res.type = RTN_MULTICAST;
 1879 else if (BADCLASS(key.dst) || ZERONET(key.dst))
 1880 goto e_inval;
 1881
 1882 if (dev_out−>flags & IFF_LOOPBACK)
 1883 flags |= RTCF_LOCAL;
 1884

If the result type is BROADCAST, then any fib_info structure that is held is released.

 1885 if (res.type == RTN_BROADCAST) {
 1886 flags |= RTCF_BROADCAST | RTCF_LOCAL;
 1887 if (res.fi) {
 1888 fib_info_put(res.fi);
 1889 res.fi = NULL;
 1890 }
 1891 } else if (res.type == RTN_MULTICAST) {
 1892 flags |= RTCF_MULTICAST|RTCF_LOCAL;
 1893 read_lock(&inetdev_lock);
 1894 if (!__in_dev_get(dev_out) ||
 1895 !ip_check_mc(__in_dev_get(dev_out),

oldkey−>dst))
 1896 flags &= ~RTCF_LOCAL;
 1897 read_unlock(&inetdev_lock);
 1898 /* If multicast route do not exist use
 1899 default one, but do not gateway in
 1900 this case. Yes, it is hack.
 1901 */
 1902 if (res.fi && res.prefixlen < 4) {
 1903 fib_info_put(res.fi);
 1904 res.fi = NULL;
 1905 }
 1906 }

30

Allocate memory from the slab allocator for a route cache entry.

 1908 rth = dst_alloc(&ipv4_dst_ops);
 1909 if (!rth)
 1910 goto e_nobufs;
 1911
 1912 atomic_set(&rth−>u.dst.__refcnt, 1);

Copy (most of) the elements of the key structure that was used to create the route to the key structure
embedded the rth.

 1913 rth−>u.dst.flags= DST_HOST;
 1914 rth−>key.dst = oldkey−>dst;
 1915 rth−>key.tos = tos;
 1916 rth−>key.src = oldkey−>src;
 1917 rth−>key.iif = 0;
 1918 rth−>key.oif = oldkey−>oif;
 1919 #ifdef CONFIG_IP_ROUTE_FWMARK
 1920 rth−>key.fwmark = oldkey−>fwmark;
 1921 #endif

Copy the elements used to route the packet to the rt_ fields of the route cache element.

 1922 rth−>rt_dst = key.dst;
 1923 rth−>rt_src = key.src;
 1924 #ifdef CONFIG_IP_ROUTE_NAT
 1925 rth−>rt_dst_map = key.dst;
 1926 rth−>rt_src_map = key.src;
 1927 #endif
 1928 rth−>rt_iif= oldkey−>oif ? : dev_out−>ifindex;
 1929 rth−>u.dst.dev = dev_out;
 1930 dev_hold(dev_out);
 1931 rth−>rt_gateway = key.dst;
 1932 rth−>rt_spec_dst= key.src;
 1933

Setup the function that will be used to transmit the packet.

 1934 rth−>u.dst.output=ip_output;
 1935
 1936 rt_cache_stat[smp_processor_id()].out_slow_tot++;
 1937

31

If the flags indicate that this route terminates on this machine, then the input handler is set to
ip_local_deliver.

 1938 if (flags & RTCF_LOCAL) {
 1939 rth−>u.dst.input = ip_local_deliver;
 1940 rth−>rt_spec_dst = key.dst;
 1941 }
 1942 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
 1943 rth−>rt_spec_dst = key.src;
 1944 if (flags & RTCF_LOCAL &&

!(dev_out−>flags & IFF_LOOPBACK)) {
 1945 rth−>u.dst.output = ip_mc_output;
 1946 rt_cache_stat

[smp_processor_id()].out_slow_mc++;
 1947 }

CONFIG_IP_MROUTE option is used if you want your machine to act as a router for IP packets that
have multicast destination addresses.

 1948 #ifdef CONFIG_IP_MROUTE
 1949 if (res.type == RTN_MULTICAST) {
 1950 struct in_device *in_dev =

in_dev_get(dev_out);
 1951 if (in_dev) {
 1952 if (IN_DEV_MFORWARD(in_dev) &&
 1953 !LOCAL_MCAST(oldkey−>dst)) {
 1954 rth−>u.dst.input = ip_mr_input;
 1955 rth−>u.dst.output = ip_mc_output;
 1956 }
 1957 in_dev_put(in_dev);
 1958 }
 1959 }
 1960 #endif
 1961 }
 1962

32

Call rt_set_nexthop() defined in net/ipv4/route.c to set next neighbor parameters like pmtu and mss.

 1963 rt_set_nexthop(rth, &res, 0);

 1180 static void rt_set_nexthop(struct rtable *rt, struct
fib_result *res, u32 itag)

 1181 {
 1182 struct fib_info *fi = res−>fi;
 1183

The bulk of this code seems to be attempting to address potential problems associated with missing
or invalid elements in the fib_info structure.

 1184 if (fi) {
 1185 if (FIB_RES_GW(*res) &&
 1186 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
 1187 rt−>rt_gateway = FIB_RES_GW(*res);
 1188 memcpy(&rt−>u.dst.mxlock, fi−>fib_metrics,
 1189 sizeof(fi−>fib_metrics));

fib_mtu is actually a macro referencing the RTAX_MTU element of the fib_metrics array. If the
value is zero it is copied from the net device. Oddly, it appears that rt−>u.dst.pmtu has not been
previously set in this module... so it is also set in the else clause!

 1190 if (fi−>fib_mtu == 0) {
 1191 rt−>u.dst.pmtu = rt−>u.dst.dev−>mtu;
 1192 if (rt−>u.dst.mxlock & (1 << RTAX_MTU) &&
 1193 rt−>rt_gateway != rt−>rt_dst &&
 1194 rt−>u.dst.pmtu > 576)
 1195 rt−>u.dst.pmtu = 576;
 1196 }
 1197 #ifdef CONFIG_NET_CLS_ROUTE
 1198 rt−>u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
 1199 #endif
 1200 } else
 1201 rt−>u.dst.pmtu = rt−>u.dst.dev−>mtu;
 1202
 1203 if (rt−>u.dst.pmtu > IP_MAX_MTU)
 1204 rt−>u.dst.pmtu = IP_MAX_MTU;
 1205 if (rt−>u.dst.advmss == 0)
 1206 rt−>u.dst.advmss = max_t(unsigned int,

rt−>u.dst.dev−>mtu − 40,
 1207 ip_rt_min_advmss);

33

 1208 if (rt−>u.dst.advmss > 65535 − 40)
 1209 rt−>u.dst.advmss = 65535 − 40;
 1210
 1211 #ifdef CONFIG_NET_CLS_ROUTE
 1212 #ifdef CONFIG_IP_MULTIPLE_TABLES
 1213 set_class_tag(rt, fib_rules_tclass(res));
 1214 #endif
 1215 set_class_tag(rt, itag);
 1216 #endif
 1217 rt−>rt_type = res−>type;
 1218 }

On return to ip_route_output_slow(), use the source address, destination address, and tos to
determine and return a hash value by invoking the rt_hash_code() function defined in
net/ipv4/route.c We had visited this function earlier in UDP connect and was called by the
ip_route_output_key() function.

 1965 rth−>rt_flags = flags;
 1967 hash = rt_hash_code(oldkey−>dst, oldkey−>src ^

(oldkey−>oif << 5), tos);

The hash code returned is used by rt_intern_hash() function to search in the respective hash queue of
routing cache (rt_hash_table) to find an entry that matches the entry that was just created. The rp
parameter was passed in to ip_route_output_slow() as the location at which a pointer to the new
route cache entry should be returned.

 1968 err = rt_intern_hash(hash, rth, rp);

 601 static int rt_intern_hash(unsigned hash, struct rtable
*rt, struct rtable **rp)

 602 {
 603 struct rtable *rth, **rthp;
 604 unsigned long now = jiffies;
 605 int attempts = !in_softirq();
 606
 607 restart:

34

Recall that the route cache is based upon a table of structures. Each structure contains a pointer to
the first struct rtable element in the hash queue and a lock for the queue. Here the queue is locked
and the value of rthp is set to point to the chain header (as opposed to set to the chain header!) As
the while loop continues rthp will be advanced.

 608 rthp = &rt_hash_table[hash].chain;
 609
 610 write_lock_bh(&rt_hash_table[hash].lock);

This loop appears to be looking for the possible case that the route already exists! This could
conceivably occur due to race conditions involving multiple callers of ip_route_output(). If an
existing entry with the same key is found, the existing entry is used and the newly created one is
dropped.

 611 while ((rth = *rthp) != NULL) {
 612 if (memcmp(&rth−>key, &rt−>key,

sizeof(rt−>key)) == 0) {
 613 /* Put it first */
 614 *rthp = rth−>u.rt_next;
 615 rth−>u.rt_next = rt_hash_table[hash].chain;
 616 rt_hash_table[hash].chain = rth;

Update the reference count and the last use of the existing entry.

 618 rth−>u.dst.__use++;
 619 dst_hold(&rth−>u.dst);
 620 rth−>u.dst.lastuse = now;
 621

write_unlock_bh(&rt_hash_table
[hash].lock);

 622
 623 rt_drop(rt);
 624 *rp = rth;
 625 return 0;
 626 }
 627
 628 rthp = &rth−>u.rt_next;
 629 }
 630

35

 631 /* Try to bind route to arp only if it is output
 632 route or unicast forwarding path.
 633 */
 634 if (rt−>rt_type == RTN_UNICAST || rt−>key.iif== 0) {
 635 int err = arp_bind_neighbour(&rt−>u.dst);

The arp_bind_neighbour() function defined in net/ipv4/arp.c is invoked. This function tries to locate
an entry in the ARP table for the destination address, if one exists.

 429 int arp_bind_neighbour(struct dst_entry *dst)
 430 {
 431 struct net_device *dev = dst−>dev;
 432 struct neighbour *n = dst−>neighbour;
 433
 434 if (dev == NULL)
 435 return −EINVAL;
 436 if (n == NULL) {
 437 u32 nexthop = ((struct rtable*)dst)−>rt_gateway;
 438 if (dev−>flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
 439 nexthop = 0;
 440 n = __neigh_lookup_errno(
 441 #ifdef CONFIG_ATM_CLIP
 442 dev−>type == ARPHRD_ATM ? &clip_tbl :
 443 #endif
 444 &arp_tbl, &nexthop, dev);

neigh_lookup_errno() is defined in include/net/neighbour.h

 266 static inline struct neighbour *
 267 _neigh_lookup_errno(struct neigh_table *tbl,const void *pkey,
 268 struct net_device *dev)
 269 {
 270 struct neighbour *n = neigh_lookup(tbl, pkey, dev);
 271
 272 if (n)
 273 return n;
 274
 275 return neigh_create(tbl, pkey, dev);
 276 }

 445 if (IS_ERR(n))
 446 return PTR_ERR(n);
 447 dst−>neighbour = n;
 448 }
 449 return 0;
 450 }

36

 636 if (err) {
 637 write_unlock_bh(&rt_hash_table[hash].lock);
 638
 639 if (err != −ENOBUFS) {
 640 rt_drop(rt);
 641 return err;
 642 }

 644 /* Neighbour tables are full and nothing
 645 can be released. Try to shrink route cache,
 646 it is most likely it holds some neighbour records.
 647 */

 648 if (attempts−− > 0) {
 649 int saved_elasticity =

ip_rt_gc_elasticity;
 650 int saved_int = ip_rt_gc_min_interval;
 651 ip_rt_gc_elasticity = 1;
 652 ip_rt_gc_min_interval = 0;
 653 rt_garbage_collect();
 654 ip_rt_gc_min_interval = saved_int;
 655 ip_rt_gc_elasticity = saved_elasticity;
 656 goto restart;
 657 }

 658
 659 if (net_ratelimit())
 660 printk("Neighbour table overflow.\n");
 661 rt_drop(rt);
 662 return −ENOBUFS;
 663 }
 664 }
 665

37

Here the new route is inserted at the head of the hash queue.

 666 rt−>u.rt_next = rt_hash_table[hash].chain;
 667 #if RT_CACHE_DEBUG >= 2
 668 if (rt−>u.rt_next) {
 669 struct rtable *trt;
 670 printk("rt_cache @%02x: %u.%u.%u.%u", hash,
 671 NIPQUAD(rt−>rt_dst));
 672 for (trt = rt−>u.rt_next; trt;

trt = trt−>u.rt_next)
 673 printk(" . %u.%u.%u.%u", NIPQUAD(trt−>rt_dst));
 674 printk("\n");
 675 }
 676 #endif
 677 rt_hash_table[hash].chain = rt;
 678 write_unlock_bh(&rt_hash_table[hash].lock);
 679 *rp = rt;
 680 return 0;
 681 }

Release reference to FIB table and the device, if holding.

 1969 done:
 1970 if (free_res)
 1971 fib_res_put(&res);
 1972 if (dev_out)
 1973 dev_put(dev_out);
 1974 out: return err;
 1975
 1976 e_inval:
 1977 err = −EINVAL;
 1978 goto done;
 1979 e_nobufs:
 1980 err = −ENOBUFS;
 1981 goto done;
 1982 }

To summarize, the ip_route_output_slow() function does the following:

Creates a routing table cache key
If the source address is specified, calls ip_dev_find() to determine the output device.
If the oif is specified, use dev_get_by_index to retrieve output device and select source addr

(if the dest address was not NULL (p.22).
If the destination address is not known, set up loopback
Calls fib_lookup() to find route to destination.
Allocates memory for new routing cache entry and initializes it.
Calls rt_set_nexthop() to find next destination.
Returns rt_intern_hash(), which creates a new route in the routing cache.

38

39

