
Received Packet Processing

In this section we consider the processing of a received packet as it moves from the device driver to
the IP layer. The device driver relies principally upon two kernel functions

dev_alloc_skb() Allocates an sk_buff of the required size prior to transferring the packet
to kernel memory. Two hardware strategies are commonly used. If
packets are received directly into system memory owned by the kernel,
the sk_buff must be allocated prior to initiating the receive operation.
If packets are first received into NIC buffers and then transferred via
DMA to system memory, an sk_buff of the exact size needed may be
allocated after the packet has been received but before the DMA
transfer is initiated.

netif_rx() Used to pass the sk_buff to the generic device layer when a receive
operation completes.

The example below is taken from drivers/net/3c59x.c

 skb = dev_alloc_skb(pkt_len + 5);
 skb−>protocol = eth_type_trans(skb, dev);

:
 netif_rx(skb);

Allocation and initialization of the sk_buff

dev_alloc_skb() is defined in include/linux/skbuff.h. It merely calls __dev_alloc_skb with the
GFP_ATOMIC flag set. This flag forces kmalloc() to return an error code rather than sleeping if no
memory is available. It is necessary because sleeping in an interrupt context is a fatal error.

 1053 static inline struct sk_buff *dev_alloc_skb(unsigned
int length)

 1054 {
 1055 return __dev_alloc_skb(length, GFP_ATOMIC);
 1056 }

1

__dev_alloc_skb() allocates memory for the sk_buff of specified size. A few additional bytes
are always allocated for alignment optimization purposes.

 1028
 1029 static inline struct sk_buff *__dev_alloc_skb(unsigned

int length, int gfp_mask)
 1031 {
 1032 struct sk_buff *skb;
 1033
 1034 skb = alloc_skb(length+16, gfp_mask);

The alloc_skb() function allocates the sk_buff. Recall that an sk_buff consists of a fixed size header
of type struct sk_ buff which is allocated from a cache of such objects and a variable size data buffer
allocated from one of the general caches and actually holds the packet’s headers and user data.

 164 struct sk_buff *alloc_skb(unsigned int size,int gfp_mask)
 165 {
 166 struct sk_buff *skb;
 167 u8 *data;
 168
 169 if (in_interrupt() && (gfp_mask & __GFP_WAIT)) {
 170 static int count = 0;
 171 if (++count < 5) {
 172 printk(KERN_ERR "alloc_skb called nonatomically "
 173 "from interrupt %p\n", NET_CALLER(size));
 174 BUG();
 175 }
 176 gfp_mask &= ~__GFP_WAIT;
 177 }
 178
 179 /* Get the HEAD */
 180 skb = skb_head_from_pool();
 181 if (skb == NULL) {
 182 skb = kmem_cache_alloc(skbuff_head_cache, gfp_mask &

~__GFP_DMA);
 183 if (skb == NULL)
 184 goto nohead;
 185 }
 186
 187 /* Get the DATA. Size must match skb_add_mtu(). */
 188 size = SKB_DATA_ALIGN(size);
 189 data = kmalloc(size + sizeof(struct skb_shared_info),

 gfp_mask);
 190 if (data == NULL)
 191 goto nodata;

2

When head and data have been successfully allocated, the head is initialized.

 192
 193 /* XXX: does not include slab overhead */
 194 skb−>truesize = size + sizeof(struct sk_buff);
 195
 196 /* Load the data pointers. */
 197 skb−>head = data;
 198 skb−>data = data;
 199 skb−>tail = data;
 200 skb−>end = data + size;
 201
 202 /* Set up other state */
 203 skb−>len = 0;
 204 skb−>cloned = 0;
 205 skb−>data_len = 0;
 206
 207 atomic_set(&skb−>users, 1);
 208 atomic_set(&(skb_shinfo(skb)−>dataref), 1);
 209 skb_shinfo(skb)−>nr_frags = 0;
 210 skb_shinfo(skb)−>frag_list = NULL;
 211 return skb;
 212
 213 nodata:
 214 skb_head_to_pool(skb);
 215 nohead:
 216 return NULL;
 217 }
 218
 219

On return to __dev_alloc_skb() space is reserved for the MAC header.

 1035 if (skb)
 1036 skb_reserve(skb,16);
 1037 return skb;
 1038 }

skb_reserve moves the data and tail pointers to point to first byte after the 16 bytes of headroom.

 911 static inline void skb_reserve(struct sk_buff *skb,
unsigned int len)

 912 {
 913 skb−>data+=len;
 914 skb−>tail+=len;
 915 }

3

The skb_put() function can be used to update the len and tail values after data has been placed in the
sk_buff(). The actual filling of the buffer is most commonly performed by a DMA transfer.

 786 static inline unsigned char *skb_put(struct sk_buff
*skb, unsigned int len)

 787 {
 788 unsigned char *tmp=skb−>tail;
 789 SKB_LINEAR_ASSERT(skb);
 790 skb−>tail += len;
 791 skb−>len += len;
 792 if(skb−>tail>skb−>end) {
 793 skb_over_panic(skb,len,current_text_addr());
 794 }
 795 return tmp;
 796 }

Non−linear sk_buffs are those consisting of unmapped page buffers and additional chained struct
sk_buffs. A non−zero value of data_len is an indicator of non−linearity. For obvious reasons the
simple skb_put() function neither supports nor tolerates non−linearity. SKB_LINEAR_ASSERT
checks value of data_len through function skb_is_nonlinear. A non−zero value results in an error
message to be logged by BUG.

 761 #define SKB_LINEAR_ASSERT(skb)
do { if (skb_is_nonlinear(skb)) BUG(); } while (0)

skb_is_nonlinear is defined as below.

 749 static inline int skb_is_nonlinear(const struct
sk_buff *skb)

 750 {
 751 return skb−>data_len;
 752 }

4

Queuing the packet with netif_rx()

The netif_rx() function is defined in net/core/dev.c. It typically runs in the context of the hardware
interrupt that signalled the completion of the DMA transfer. Its function is to queue the sk_ buff for
processing by network layer. The buffer may, however, be dropped during processing for congestion
control. After queuing the packet, netif_rx() raises the NET_RX_SOFTIRQ. The bulk of the
processing of an input packet is done in the context of this softirq by the net_rx_action() function.
The netif_rx() function returns one of the following values which are defined in
include/linux/netdevice.h.

 55 /* Backlog congestion levels */
 56 #define NET_RX_SUCCESS 0 /* keep ’em coming, baby */
 57 #define NET_RX_DROP 1 /* packet dropped */
 58 #define NET_RX_CN_LOW 2 /* storm alert, just in case */
 59 #define NET_RX_CN_MOD 3 /* Storm on its way! */
 60 #define NET_RX_CN_HIGH 4 /* The storm is here */
 61 #define NET_RX_BAD 5 /* packet dropped due to

kernel error */

Incoming packets are placed on per−cpu queues so that no locking is needed. The softnet_data
array, defined in include/linux/netdevice.h., consists of a struct softnet_data for each CPU.

 473 struct softnet_data
 474 {
 475 int throttle;
 476 int cng_level;
 477 int avg_blog;
 478 struct sk_buff_head input_pkt_queue;
 479 struct net_device *output_queue;
 480 struct sk_buff *completion_queue;
 481 } __attribute__((__aligned__(SMP_CACHE_BYTES)));

 484 extern struct softnet_data softnet_data[NR_CPUS];

 97 struct sk_buff_head {
 98 /* These two members must be first. */
 99 struct sk_buff * next;
 100 struct sk_buff * prev;
 101
 102 __u32 qlen;
 103 spinlock_t lock;
 104 };

5

These are the congestion management parameters.

1073 int netdev_max_backlog = 300;
1074 /* These numbers are selected based on intuition and some
1075 * experimentatiom, if you have more scientific way
1076 * please go ahead and fix things.
1077 */
1078 int no_cong_thresh = 10;
1079 int no_cong = 20;
1080 int lo_cong = 100;
1081 int mod_cong = 290;
1082

 1214 int netif_rx(struct sk_buff *skb)
 1215 {
 1216 int this_cpu = smp_processor_id();
 1217 struct softnet_data *queue;
 1218 unsigned long flags;

If the device driver has not already time stamped the packet, it is done here.

 1220 if (skb−>stamp.tv_sec == 0)
 1221 do_gettimeofday(&skb−>stamp);

The local variable queue is set to point to the struct sofnet_data for this cpu.

 1223 /* The code is rearranged so that the path is
the most short when CPU is congested, but is
still operating.

 1225 */
 1226 queue = &softnet_data[this_cpu];
 1227

Interrupts are disabled on this CPU while the packet is queued.

 1228 local_irq_save(flags);
 1229
 1230 netdev_rx_stat[this_cpu].total++;

6

The length of the input packet queue is compared against its maximum backlog. If the queue is full,
the sk_buff is discarded. The value of netdev_max_backlog is declared to be 300 packets in
net/core/dev.c.

 1231 if (queue−>input_pkt_queue.qlen <= netdev_max_backlog) {

The following compound if first tests to see if the input queue is not empty. If the queue is not
empty, then the throttle flag is tested to see if the packet should be dropped. The throttle flag
indicates the presence (1) or absence (0) of congestion. If congestion is present, the sk_buff is
discarded.

 1232 if (queue−>input_pkt_queue.qlen) {
 1233 if (queue−>throttle)
 1234 goto drop;

If the throttle flag is not set, the sk_buff is added to the input packet queue. Since the if statement
above found qlen > 0, the queue is guaranteed to be non−empty here.

 1236 enqueue:
 1237 dev_hold(skb−>dev);
 1238 __skb_queue_tail(&queue−>input_pkt_queue,

skb);

The cpu_raise_softirq() function sets a flag to indicate that the NET_RX_SOFTIRQ software
interrupt is now pending. Most of the actual work of handling the packet will take place in the
context of the softirq.

 1239 /* Runs from irqs or BH’s, no need to wake BH */
 1240 cpu_raise_softirq(this_cpu, NET_RX_SOFTIRQ);
 1241 local_irq_restore(flags);

After raising the softirq, netif_rx() returns the congestion level from softnet_data structure.
The get_sample_stats() function in net/core/dev.c sets the congestion level.

 1242 #ifndef OFFLINE_SAMPLE
 1243 get_sample_stats(this_cpu);
 1244 #endif
 1245 return softnet_data[this_cpu].cng_level;
 1246 }

7

If we reach this point in netif_rx(), the input packet queue is empty. The throttle flag, if set, is
cleared.

 1248 if (queue−>throttle) {
 1249 queue−>throttle = 0;
 1250 #ifdef CONFIG_NET_HW_FLOWCONTROL
 1251 if (atomic_dec_and_test

(&netdev_dropping))
 1252 netdev_wakeup();
 1253 #endif
 1254 }

Here we jump back to the code that queue the sk_buff and raises the soft irq.

 1255 goto enqueue;
 1256 }

The if block that began at line 1231 ends here. If control reaches this point the input packet queue is
full of sk_buffs. The throttle flag is set to indicate congestion. Note that once the queue becomes
throttled it must drain completely to become ‘‘unthrottled’’.

 1258 if (queue−>throttle == 0) {
 1259 queue−>throttle = 1;
 1260 netdev_rx_stat[this_cpu].throttled++;
 1261 #ifdef CONFIG_NET_HW_FLOWCONTROL
 1262 atomic_inc(&netdev_dropping);
 1263 #endif
 1264 }

The sk_buff is discarded here.

 1266 drop:
 1267 netdev_rx_stat[this_cpu].dropped++;
 1268 local_irq_restore(flags);
 1269
 1270 kfree_skb(skb);
 1271 return NET_RX_DROP;
 1272 }

This is the end of netif_rx. We now turn our attention to the softirq.

8

Softirqs

In early versions of Linux processing of received packets took place in the context of what was
called a bottom half. The softirq mechanism, which was designed to replace the bottom half was
introduced in kernel 2.4. The primary advantage of the softirq mechanism is that multiple soft irqs
may run concurrently on multiple processes. Bottom halves were permitted to run only on one CPU
at a time.

Further handling of our packet is done in the network receive softirq (NET_RX_SOFTIRQ) which is
called from kernel/softirq.c:do_softirq().

Recall that the function netdev_init() which runs at boot time registered two softirq handlers.

 2865 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
 2866 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);

Therefore when netif_rx() executed the line of code shown below it indirectly causes the function
net_rx_action() to be executed in a softirq context.

 1240 cpu_raise_softirq(this_cpu, NET_RX_SOFTIRQ);

9

The do_softirq() function is defined in kernel/softirq.c. It invokes the appropriate action handler for
each softirq raised.

 61 asmlinkage void do_softirq()
 62 {
 63 int cpu = smp_processor_id();
 64 __u32 pending;
 65 long flags;
 66 __u32 mask;
 67
 68 if (in_interrupt())
 69 return;
 70
 71 local_irq_save(flags);

The variable pending is a bit mask that indicates which of the possible 32 soft irqs are presently
pending. It is set to irq_stat[cpu].__softirq_pending and mask is set to complement of this value.

 73 pending = softirq_pending(cpu);
 74
 75 if (pending) {
 76 struct softirq_action *h;
 77
 78 mask = ~pending;
 79 local_bh_disable();

local_bh_disable is defined in include/asm−i386/softirq.h. It is replaced by a call to cpu_bh_disable.
local_bh_count is a macro which translates to irq_stat[cpu].__local_bh_count.

 10 #define cpu_bh_disable(cpu) \
 11 do { local_bh_count(cpu)++; barrier(); } while (0)
 12
 13 #define local_bh_disable()
 cpu_bh_disable(smp_processor_id())

10

Now in do_softirq, clear irq_stat[cpu].__softirq_pending.

 80 restart:
 81 /* Reset the pending bitmask before enabling irqs */
 82 softirq_pending(cpu) = 0;
 83
 84 local_irq_enable();

"h" is set to point to first element in softirq_vec array.

 86 h = softirq_vec;
 87
 88 do {

Softirqs are checked in order of their priority (HI_SOFTIRQ, NET_TX_SOFTIRQ ...)
and the respective function handler is called. In the case of NET_RX_SOFTIRQ, it is net_rx_action.

 89 if (pending & 1)
 90 h−>action(h);

"h" is now set to point to next element in softirq_vec array.

 91 h++;
 92 pending >>= 1;
 93 } while (pending);
 94
 95 local_irq_disable();

If new softirqs (other than those handled above) have been raised, they are handled as well. Recall
that mask was originally set to the complement of pending. The masking here is presumably in
place to prevent livelock type conditions.

 97 pending = softirq_pending(cpu);
 98 if (pending & mask) {
 99 mask &= ~pending;
 100 goto restart;
 101 }

11

__local_bh_enable is defined in include/asm−i386/softirq.h.

 8 #define __cpu_bh_enable(cpu) \
 9 do { barrier(); local_bh_count(cpu)−−; } while (0)
 14 #define __local_bh_enable()

__cpu_bh_enable(smp_processor_id())

 102 __local_bh_enable();
 103
 104 if (pending)
 105 wakeup_softirqd(cpu);
 106 }
 107
 108 local_irq_restore(flags);
 109 }

Received packet handling in the softirq.

The net_rx_action() function resides in net/core/dev.c and was previously shown to have been
installed as the handler for the NET_RX_SOFTIRQ. As might be expected, its mission is to
consume packets from the queue that netif_rx() produces to and then to pass them on to the proper
handler.

 1419 static void net_rx_action(struct softirq_action *h)
 1420 {
 1421 int this_cpu = smp_processor_id();

A unique structure of type struct softnet_data is associated with each CPU for the purpose of
managing input and output queues at the interface between the protocols and the device driver. Here
queue is initalized to point to softnet_data structure for this CPU.

 1422 struct softnet_data *queue =
&softnet_data[this_cpu];

 1423 unsigned long start_time = jiffies;
 1424 int bugdet = netdev_max_backlog;
 1425
 1426 br_read_lock(BR_NETPROTO_LOCK);
 1427

12

This loop is executed until either the input queue has been emptied, at least one jiffy of CPU time has
been consumed, or the value of bugdet becomes negative.

 1428 for (;;) {
 1429 struct sk_buff *skb;
 1430 struct net_device *rx_dev;

Attempt to dequeue an sk_buff from this CPU’s input packet queue. Because the queue is local to
the CPU local disabling of interrupts provides safe serialization.

 1432 local_irq_disable();
 1433 skb = __skb_dequeue(&queue−>input_pkt_queue);
 1434 local_irq_enable();

Return if the input packet queue is empty.

 1436 if (skb == NULL)
 1437 break;

The net_device pointer (which was set by the device driver) is potentially adjusted here.

 1439 skb_bond(skb);

The skb_bond() function is defined in net/core/dev.c. It assigns the sk_buff to the master device for
present device if such exists. We really don’t understand device groups and master devices!

 /* Reparent skb to master device. This function is
called only from net_rx_action under
BR_NETPROTO_LOCK.
It is misuse of BR_NETPROTO_LOCK, but it is OK for
now.

 */
 1314 static __inline__ void skb_bond(struct sk_buff *skb)
 1315 {
 1316 struct net_device *dev = skb−>dev;
 1317
 1318 if (dev−>master) {
 1319 dev_hold(dev−>master);
 1320 skb−>dev = dev−>master;
 1321 dev_put(dev);
 1322 }
 1323 }

13

Back in net_rx_action the net_device pointer is copied to a local variable.

 1441 rx_dev = skb−>dev;
 1442

CONFIG_NET_FASTROUTE is an option to allow direct NIC−to−NIC data transfer on a local
network. We do will ignore it for now.

 1443 #ifdef CONFIG_NET_FASTROUTE
 1444 if (skb−>pkt_type == PACKET_FASTROUTE) {
 1445 netdev_rx_stat[this_cpu].

fastroute_deferred_out++;
 1446 dev_queue_xmit(skb);
 1447 dev_put(rx_dev);
 1448 continue;
 1449 }
 1450 #endif

Link level demultiplexing

Here skb−>data points to the start of the data area of the buffer. Therefore h.raw and nh.raw are
both being set to point to the MAC header.

 1451 skb−>h.raw = skb−>nh.raw = skb−>data;

Here is where link layer demultiplexing takes place. For DIX framing the key to demultiplexing is
the standard packet type field that is carried in the MAC header.

 39 #define ETH_P_LOOP 0x0060 /* Ethernet Loopback packet */
 40 #define ETH_P_PUP 0x0200 /* Xerox PUP packet */
 41 #define ETH_P_PUPAT 0x0201 /* Xerox PUP Addr Trans packet */
 42 #define ETH_P_IP 0x0800 /* Internet Protocol packet */
 43 #define ETH_P_X25 0x0805 /* CCITT X.25 */
 44 #define ETH_P_ARP 0x0806 /* Address Resolution packet */
 45 #define ETH_P_BPQ 0x08FF /* G8BPQ AX.25 Ethernet Packet */
 46 #define ETH_P_IEEEPUP 0x0a00 /* Xerox IEEE802.3 PUP packet */
 47 #define ETH_P_IEEEPUPAT 0x0a01 /* Xerox IEEE802.3 PUP Addr Trans pkt*/

 For 802.3 life is a bit more complicated:

 73 #define ETH_P_802_3 0x0001 /* Dummy type for 802.3 frames */
 74 #define ETH_P_AX25 0x0002 /* Dummy protocol id for AX.25 */
 75 #define ETH_P_ALL 0x0003 /* Every packet (be careful!!!) */
 76 #define ETH_P_802_2 0x0004 /* 802.2 frames */
 77 #define ETH_P_SNAP 0x0005 /* Internal only */
 78 #define ETH_P_DDCMP 0x0006 /* DEC DDCMP: Internal only */

14

For all types this routine depends upon the device driver to have extracted the appropriate type from
the MAC header and stored in in skb−>protocol in host byte order. A convenience function is
provided to the device driver as shown in the following extract from 3c59x.c

 2419 skb−>protocol = eth_type_trans(skb, dev);

 152 /*
 153 * Determine packet’s protocol ID. The rule here is that we
 154 * assume 802.3 if type field is short enough to be a length.
 155 * This is normal and works for any ’now in use’ protocol.
 156 */
 157
 158 unsigned short eth_type_trans(struct sk_buff *skb,

struct net_device *dev)
 159 {
 160 struct ethhdr *eth;
 161 unsigned char *rawp;
 162

The call to skb_pull() advances skb−>data so that it points to the network layer header (or the IEEE
802.2 LLC header for 802.2/3 framing, and decrements skb−>len by the length of the MAC header
(hard_header_len);

 163 skb−>mac.raw = skb−>data;
 164 skb_pull(skb,dev−>hard_header_len);
 165 eth = skb−>mac.ethernet;
 166

15

If the low order bit of the high order byte of the MAC address is 1, then this packet is a broadcast or
a multicast.

 167 if (*eth−>h_dest&1)
 168 {
 169 if(memcmp(eth−>h_dest,dev−>broadcast, ETH_ALEN)==0)
 170 skb−>pkt_type=PACKET_BROADCAST;
 171 else
 172 skb−>pkt_type=PACKET_MULTICAST;
 173 }
 174
 175 /*
 176 * This ALLMULTI check should be redundant by 1.4
 177 * so don’t forget to remove it.
 178 *
 179 * Seems, you forgot to remove it. All silly devices
 180 * seems to set IFF_PROMISC.
 181 */
 182
 183 else if(1 /*dev−>flags&IFF_PROMISC*/)
 184 {
 185 if(memcmp(eth−>h_dest,dev−>dev_addr, ETH_ALEN))
 186 skb−>pkt_type = PACKET_OTHERHOST;
 187 }
 188

The two byte field immediately following the destination MAC address is the packet type for DIX
framing but it is the packet length for IEEE 802.2/3 framing. For IP, ARP, RARP, and IPX the
packet type is at least 0x800 which is 2048 and thus larger than the maximum frame size. It does
look like something really ugly could ensue here if jumbo frames were used in conjunction with
802.2/3 framing.

 189 if (ntohs(eth−>h_proto) >= 1536)
 190 return eth−>h_proto;
 191
 192 rawp = skb−>data;
 193
 194 /*
 195 *This is a hack to spot IPX packets. Older Novell breaks
 196 *the proto and runs IPX over 802.3 without an 802.2 LLC
 197 *layer. We look for FFFF which isn’t a used 802.2 SSAP/DSAP.
 198 *This won’t work for fault tol netware but does for the rest.
 199 */
 200 if (*(unsigned short *)rawp == 0xFFFF)
 201 return htons(ETH_P_802_3);
 202

16

For "real" 802.2/3 framing, the length field is followed by the 802.2 LLC header containing the
DSAP,SSAP, and cntl fields which are normally set to 0xaa, 0xaa, 0x03. This is followed by the
802.2 SNAP header which contains a 3 byte originator code and finally the 2 byte type field. This
module just returns the code for 802_2 in that case and leaves it to the 802.2 module to eventually
perform the demultiplexing.

 203 /*
 204 * Real 802.2 LLC
 205 */
 206 return htons(ETH_P_802_2);
 207 }

Recall that protocol packet handlers register themselves by filling in the packet_type structure and
passing it to dev_add_pack() where the structure is placed on an appropriate chain.

 421 struct packet_type
 422 {
 423 unsigned short type; /* really htons(ether_type).*/
 424 struct net_device *dev; /* NULL is wildcarded here */
 425 int (*func) (struct sk_buff *, struct net_device *,
 426 struct packet_type *);
 427 void *data; /* Private to the packet type */
 428 struct packet_type *next;
 429 };
 430

17

This is the block in net_rx_action in which the packet processing occurs. Protocols which wish to
receive all incoming packets are linked into a list pointed to by ptype_all. These protocols register
the have type ETH_P_ALL and are processed before considering the protocols that consume only a
specific packet type.

 1452 {
 1453 struct packet_type *ptype, *pt_prev;
 1454 unsigned short type = skb−>protocol;

pt_prev is initialized to NULL. We try to match sk buff against each protocol, registered with
ptype_all.

 1456 pt_prev = NULL;
 1457 for (ptype = ptype_all; ptype; ptype =

ptype−>next) {

Even though every packet handler in this chain says it wants to see all packets, it can also say that it
wants to limit the packets to those received on a specific device. If ptype−>dev is null, then any
device is acceptable. A value of 0 in the data field of the packet_type structure indicates that this is
an old protocol that does not understand shared sk_buffs. We don’t really grasp what the oddball use
of pt_prev is all about, but possibly it is trying to deal with the necessity of cloning an skb that is to
be consumed by an old style protocol. It should be necessary to clone if and only if there is more
than one protocol interested.

 1458 if (!ptype−>dev || ptype−>dev==skb−>dev){
 1459 if (pt_prev) {
 1460 if (!pt_prev−>data) {
 1461 deliver_to_old_ones

(pt_prev, skb,0);
 1462 } else {
 1463 atomic_inc(&skb−>users);
 1464 pt_prev−>func(skb,
 1465 skb−>dev,
 1466 pt_prev);
 1467 }
 1468 }

pt_prev is set to matched protocol. The protocol specific function is called when next match is
found.

 1469 pt_prev = ptype;
 1470 }
 1471 }

18

We are also not interested in diverters at the moment.

 1473 #ifdef CONFIG_NET_DIVERT
 1474 if (skb−>dev−>divert &&

skb−>dev−>divert−>divert)
 1475 handle_diverter(skb);
 1476 #endif /* CONFIG_NET_DIVERT */

CONFIG_BRIDGE is an option to enable ethernet bridging that we are also not considering.

 1479 #if defined(CONFIG_BRIDGE) ||

defined(CONFIG_BRIDGE_MODULE)
 1480 if (skb−>dev−>br_port != NULL &&
 1481 br_handle_frame_hook != NULL){
 1482 handle_bridge(skb, pt_prev);
 1483 dev_put(rx_dev);
 1484 continue;
 1485 }
 1486 #endif

This is the point at which protocols wanting only specific packet types are processed. Recall that the
packet_type structures of these protocols are placed in a hash table with 16 hash lists. The low order
4 bits of the protocol type is the hash key. The loop processes the hash list corresponding to the
protocol type of the current packet.

 1488 for (ptype=ptype_base[ntohs(type)&15];

ptype;ptype=ptype−>next) {

Test to see if the type of the packet matches the type registered in the packet_type structure. If so,
and the protocol also registered a specific struct netdevice then it is necessary to see if the input
device matches as well.

 1489 if (ptype−>type == type &&
 1490 (!ptype−>dev ||

ptype−>dev == skb−>dev))
{

 1491 if (pt_prev) {
 1492 if (!pt_prev−>data)
 1493 deliver_to_old_ones

(pt_prev,
 skb, 0);

 1494 else {
 1495 atomic_inc

(&skb−>users);

19

Depending on the protocol type, the appropriate handler function is called. It is ip_rcv for ETH_P_IP
and arp_rcv for ETH_P_ARP.

 1496 pt_prev−>func(skb,
 1497 skb−>dev,
 1498 pt_prev);
 1499 }
 1500 }
 1501 pt_prev = ptype;
 1502 }
 1503 }

On exit from the loop invoke the function handler for the last matched protocol.

 1505 if (pt_prev) {
 1506 if (!pt_prev−>data)
 1507 deliver_to_old_ones(pt_prev,

 skb, 1);
 1508 else
 1509 pt_prev−>func(skb, skb−>dev,

pt_prev);

20

If no protocol was matched , pt_prev is NULL and the sk_buff is discarded.

 1510 } else
 1511 kfree_skb(skb);
 1512 }
 1513

The dev_put() function decrements the value of rx_dev−>refcount. This was incremented back in
netif_rx() and preserved across the scheduling of the softirq. But what if the skb_bond() call
changed it ... All is well skb_bond also released and reallocated.

 1514 dev_put(rx_dev);

If more than one jiffy has elapsed while consuming sk_buffs or netdev_max_backlog buffers have
been consumed exit the loop. Otherwise, continue dequeueing sk_buffs.

 1516 if (bugdet−− < 0 || jiffies − start_time > 1)
 1517 goto softnet_break;

This option enables NIC (Network Interface Card) hardware throttling during periods of extremal
congestion. At the moment only a couple of device drivers support it.

 1519 #ifdef CONFIG_NET_HW_FLOWCONTROL
 1520 if (queue−>throttle && queue−>input_pkt_queue.qlen

< no_cong_thresh) {
 1521 if (atomic_dec_and_test

(&netdev_dropping)) {
 1522 queue−>throttle = 0;
 1523 netdev_wakeup();
 1524 goto softnet_break;
 1525 }
 1526 }
 1527 #endif
 1528
 1529 }
 1530 br_read_unlock(BR_NETPROTO_LOCK);

21

Reaching this point means that the for loop was exited via the break at line 1437 and the input packet
queue has been completely emptied. The throttle flag is cleared, if set.

 1532 local_irq_disable();
 1533 if (queue−>throttle) {
 1534 queue−>throttle = 0;
 1535 #ifdef CONFIG_NET_HW_FLOWCONTROL
 1536 if (atomic_dec_and_test(&netdev_dropping))
 1537 netdev_wakeup();
 1538 #endif
 1539 }
 1540 local_irq_enable();
 1541
 1542 NET_PROFILE_LEAVE(softnet_process);
 1543 return;

Reaching this point means that the loop was exited via the goto at line 1517 which is triggered by the
jiffy count. The interrupt is raised again since there are sk_buffs remaining to be processed.

 1545 softnet_break:
 1546 br_read_unlock(BR_NETPROTO_LOCK);
 1547
 1548 local_irq_disable();
 1549 netdev_rx_stat[this_cpu].time_squeeze++;
 1550 /* This already runs in BH context, no need to

wake up BH’s */
 1551 cpu_raise_softirq(this_cpu, NET_RX_SOFTIRQ);
 1552 local_irq_enable();

NET_PROFILE_LEAVE has effect only when network code profiler is configured.

 1554 NET_PROFILE_LEAVE(softnet_process);
 1555 return;
 1556 }

22

The deliver_to_old_ones() function is defined in net/core/dev.c. It invokes the handler function for
old protocols that do not understand shared sk_buffs.

/* Deliver skb to an old protocol, which is not
threaded well or which do not understand shared
skbs.

 */
 1277 static int deliver_to_old_ones(struct packet_type *pt,

struct sk_buff *skb, int last)
 1278 {
 1279 static spinlock_t net_bh_lock = SPIN_LOCK_UNLOCKED;
 1280 int ret = NET_RX_DROP;
 1281

The value of last is one if and only if this is the last protocol to which the packet must be delivered.
In this case it is not necessary to create a clone of the sk_buff.

 1283 if (!last) {
 1284 skb = skb_clone(skb, GFP_ATOMIC);
 1285 if (skb == NULL)
 1286 return ret;
 1287 }

An sk_buff which contains data in unmapped page sections is made linear by skb_linearize. A linear
sb_buff is one which consists of a fixed length header of type struct sk_buff and a single kmalloc’ed
data buffer.

 1288 if (skb_is_nonlinear(skb) &&
skb_linearize(skb, GFP_ATOMIC) != 0) {

 1289 kfree_skb(skb);
 1290 return ret;
 1291 }
 1292

Here several hacks are inserted to provide the expected environment to the old protocols. We do not
consider these in detail.

 1293 /* The assumption (correct one) is that old

protocols did not depened on BHs different of
NET_BH and TIMER_BH. */

 1296
 1297 /* Emulate NET_BH with special spinlock */
 1298 spin_lock(&net_bh_lock);

All timers are disabled due to above assumption.

 1300 /* Disable timers and wait for all timers completion */
 1301 tasklet_disable(bh_task_vec+TIMER_BH);

23

The protocol specific function is invoked here. Timers are enabled thereafter.

 1303 ret = pt−>func(skb, skb−>dev, pt);
 1305 tasklet_hi_enable(bh_task_vec+TIMER_BH);
 1306 spin_unlock(&net_bh_lock);
 1307 return ret;
 1308 }

24

