
UDP recvfrom

As was the case with sending, the socket API provides several mechanisms for receiving a UDP
datagram. We begin with a study of recvfrom() which, like sendto(), does not require the user to
pass an address structure and does not support scatter/gather operations via the iovec mechanism.
The recvfrom() function takes the following arguments.

fd File (socket) descriptor.
ubuf Pointer to a buffer to hold the received message.
size The size of the above buffer.
addr Pointer to a structure of type struct sockaddr_in. If not NULL and

the socket is not connected, the address of the sender of the received
message is returned here..

addr_len A pointer to the size of the structure pointed to by addr . If non−
zero, its value is changed to the actual size of the address.

flags Can be used to modify the behaviour of the receive operation. Flags
supported for UDP sockets include:

MSG_PEEK: Used to receive data, without dequeuing it. Thus, a subsequent call shall
return the same data.

MSG_ERRQUEUE: Used to receive queued errors from socket error queue.

sys_recvfrom(), defined in net/socket.c, is the kernel function to which control is eventually passed
from sys_socketcall(). This function is defined in net/socket.c. Its parameters are those passed by
the application to recvfrom(). If an incoming packet is queued for the socket and successfuly
copied to the user buffer, sys_recvfrom returns its length in bytes. A return value of less than or
equal to zero is an indication that an error condition has been encountered and that no data has
been returned.

 1240 asmlinkage long sys_recvfrom(int fd, void * ubuf,
size_t size, unsigned flags,
struct sockaddr *addr, int *addr_len)

 1242 {
 1243 struct socket *sock;
 1244 struct iovec iov;
 1245 struct msghdr msg;
 1246 char address[MAX_SOCK_ADDR];
 1247 int err,err2;

1

The operation of the sockfd_lookup() function was described in the discussion of UDP sendto. It
returns a pointer to struct socket structure corresponding to the fd passed in by the user. If the fd
does not index a valid socket NULL is returned and the call fails.

 1249 sock = sockfd_lookup(fd, &err);
 1250 if (!sock)
 1251 goto out;

Message structures

These structures, introduced in the previous section, are used in both send and receive operations.
As with sendto(), the recvfrom() API does not support scatter−gather. Thus it is the responsibility
of sys_recvfrom to construct the msghdr and iov.

struct msghdr is defined in include/linux/socket.h.

 33 struct msghdr {
 34 void *msg_name;
 35 int msg_namelen;
 36 struct iovec *msg_iov;
 37 __kernel_size_t msg_iovlen;
 38 void *msg_control;
 39 __kernel_size_t msg_controllen;
 40 unsigned msg_flags;
 41 };

Functions of structure elements:

msg_name A pointer to the appropriate struct sockaddr. For TCP/IP sockets
this will always be struct sockaddr_in.

msg_namelen The length of the name structure passed in. For TCP/IP sockets this
should be sizeof(truct sockaddr_in).

msg_iov A pointer to the IO vector.
msg_iovlen The number of elements in the IO vector which is the number of

disjoint fragments of memory comprising the message.
msg_control A pointer to struct cmsghdr. We don’t presently under stand the use

of cmsgs.
msg_controllen The size of the associated cmsg data.
msg_flags These flags were documented on the first page of this section.

2

The struct iovec is defined in include/linux/uio.h.

 19 struct iovec
 20 {
 21 void *iov_base;
 22 kernel_size_t iov_len;
 23 };

Functions of structure:

iov_base: User space pointer to the input data buffer.
iov_len: Size of buffer pointed to by iov_base. (in bytes)

After recovering the pointer to the struct socket, sys_recvfrom() fills in the struct msghdr and the
struct iovec. Since the API supports no mechanism for the receipt of ancillary control data, such
data is not collected.

 1253 msg.msg_control=NULL;
 1254 msg.msg_controllen=0;

Since the recvfrom() API also permits the caller to pass only a single continous input buffer, a
simple I/O vector containing one data block is used.

 1255 msg.msg_iovlen=1;
 1256 msg.msg_iov=&iov;

The base pointer for the data block is set to point to the user space address of the data buffer.

 1257 iov.iov_len=size;
 1258 iov.iov_base=ubuf;

The name pointer contains the kernel space address of the local buffer in which the address of the
sender of the message will be stored temporarily.

 1259 msg.msg_name=address;
 1260 msg.msg_namelen=MAX_SOCK_ADDR;

When a socket has O_NONBLOCK flag set, the application will not block(wait) if there is
currently no data to receive.

 1261 if (sock−>file−>f_flags & O_NONBLOCK)
 1262 flags |= MSG_DONTWAIT;

3

The bulk of the work is done by sock_recvmsg(). If the value returned in err is positive, a packet
has been successfully received.

 1263 err = sock_recvmsg(sock, &msg, size, flags);

On return to sys_recvmsg() a positive value for err indicates success. If the argument addr, which
contains the user space address, is not NULL, and the message was successfully received, the
sender’s address is returned to user space by the move_addr_to_user() function.

 1265 if(err >= 0 && addr != NULL && msg.msg_namelen)
 1266 {
 1267 err2 = move_addr_to_user(address,

msg.msg_namelen, addr, addr_len);
 1268 if(err2 < 0)
 1269 err=err2;
 1270 }
 1271 sockfd_put(sock);
 1272 out:
 1273 return err;
 1274 }

The sock_recvmsg() function, defined in net/socket.c, is the point at which kernel support for all of
the recv*() APIs converges.

 515 int sock_recvmsg(struct socket *sock, struct
msghdr *msg, int size, int flags)

 516 {
 517 struct scm_cookie scm;
 518
 519 memset(&scm, 0, sizeof(scm));

For UDP and other sockets of family AF_INET, this indirect call is to inet_recvmsg(). As with
sendto() the scm cookie is not used.

 521 size = sock−>ops−>recvmsg(sock, msg, size, flags, &scm);

If there was no error, scm_receive() is called to processes any control message data. Recall that
control messages are used in the passing of sockets among unrelated processes.

 522 if (size >= 0)
 523 scm_recv(sock, msg, &scm, flags);
 524
 525 return size;
 526 }

4

The function inet_recvmsg() is defined in net/ipv4/af_inet.c.

 740 int inet_recvmsg(struct socket *sock, struct msghdr
*msg, int size, int flags, struct scm_cookie *scm)

 742 {
 743 struct sock *sk = sock−>sk;
 744 int addr_len = 0;
 745 int err;

An indirect call is made to udp_recvmsg. Note that argument the "scm " is not used by
inet_recvmsg regardless of the transport protocol that is in use and that the flags are repartitioned
into the no block flag and the flags originally passed in by the user.

 747 err = sk−>prot−>recvmsg(sk, msg, size,
 748 flags&MSG_DONTWAIT, flags&~MSG_DONTWAIT, &addr_len);

If no error occured then the address length which was filled in by udp_recvmsg() is copied back to
the msg−>msg_namelen field.

 749 if (err >= 0)
 750 msg−>msg_namelen = addr_len;
 751 return err;
 752 }

The udp_recvmsg() function is defined in net/ipv4/udp.c.

 627 int udp_recvmsg(struct sock *sk, struct msghdr *msg,
int len, int noblock, int flags, int *addr_len)

 629 {

The variable sin is declared to be a pointer of struct sockaddr_in type and set to the value of
msg−>msg_name.

 630 struct sockaddr_in *sin = (struct sockaddr_in *)

 msg−>msg_name;
 631 struct sk_buff *skb;
 632 int copied, err;

Set length of address to size of struct sockaddr_in. No wonder they don’t use very many
comments in this code.

 634 /*
 635 * Check any passed addresses
 636 */
 637 if (addr_len)
 638 *addr_len=sizeof(*sin);

5

If MSG_ERRQUEUE is specified in flags, data is received from the error queue of the socket.
What are the operations in this case −−− we need to check out ip_recv_error.

 640 if (flags & MSG_ERRQUEUE)
 641 return ip_recv_error(sk, msg, len);

A single UDP packet is retreived from the receive queue associated with the struct sock by
skb_recv_datagram().

 643 skb = skb_recv_datagram(sk, flags, noblock, &err);

The skb_recv_datagram() function is defined in net/core/datagram.c.

 135 struct sk_buff *skb_recv_datagram(struct sock *sk,
unsigned flags, int noblock, int *err)

 136 {
 137 int error;
 138 struct sk_buff *skb;
 139 long timeo;

This function sock_error returns value of err flag in sk (struct sock) and clears it.
Here we need to understand how and when the err flag might come to be set..

 141 /* Caller is allowed not to check sk−>err before
skb_recv_datagram() */

 142 error = sock_error(sk);
 143 if (error)
 144 goto no_packet;

The function sock_error simply returns the negative of the last value to have been stored in
sk−>err.

 1198 static inline int sock_error(struct sock *sk)
 1199 {
 1200 int err=xchg(&sk−>err,0);
 1201 return −err;
 1202 }

6

Continuing in skb_recv_datagram, the value returned by sock_rcvtimeo determines the time to
wait (in ticks) for data, if the received packet queue is presently empty.

 146 timeo = sock_rcvtimeo(sk, noblock);

sock_rcvtimeo is defined in include/net/sock.h. sk−>rcvtimeo is set to default value of
MAX_SCHEDULE_TIMEOUT by sys_socket. It is the maximum value of an unsigned long type.
The units are specified in 10 msec jiffies, but this is effectively a wait forever.

 1241 static inline long sock_rcvtimeo(struct sock *sk,
int noblock)

 1242 {
 1243 return noblock ? 0 : sk−>rcvtimeo;
 1244 }

On return to skb_recv_datagram() the main receive loop is entered. Exit from the loop will occur
when:

a datagram has been successfully received
a timeout occurs (either instantly or after a very long wait)
an error occurs
a signal is received

 148 do {
 149 /* Again only user level code calls this

function, so nothing interrupt level
 150 will suddenly eat the receive_queue.
 151
 152 Look at current nfs client by the way...
 153 However, this function was corrent in

any case. 8)
 154 */

7

If MSG_PEEK is specified in flags, skb_peek() is called. It is passed a pointer to the receive
queue header. If the receive queue is non−empty it returns a pointer to the first sk buff without
dequeuing it from receive queue.

 155 if (flags & MSG_PEEK)
 156 {
 157 unsigned long cpu_flags;
 158
 159 spin_lock_irqsave(

 &sk−>receive_queue.lock,cpu_flags);
 160 skb = skb_peek(&sk−>receive_queue);

 97 struct sk_buff_head {
 98 /* These two members must be first. */
 99 struct sk_buff * next;
 100 struct sk_buff * prev;
 101
 102 __u32 qlen;
 103 spinlock_t lock;
 104 };
1
The skb_peek() function is defined in include/linux/skbuff.h. Note that sk_buff_head and sk_buff
pointers are used interchangably in line 402. This (bad) practice works correctly because the first
two elements of the sk_buff_head structure are the same as those of the sk_buff. If the next pointer
points back to the header, the list is empty and NULL is returned.

 400 static inline struct sk_buff *skb_peek(struct
sk_buff_head *list_)

 401 {
 402 struct sk_buff *list =

((struct sk_buff *)list_)−>next;
 403 if (list == (struct sk_buff *)list_)
 404 list = NULL;
 405 return list;
 406 }

Note that the user count of the buffer is incremented here. This presumably occurs because when
the buffer is eventually returned to the peeker, the count will be decremented, and, since the buffer
still resides on the queue, we don’t want it deleted! However, this is speculation, not fact, at the
moment.

 161 if(skb!=NULL)
 162 atomic_inc(&skb−>users);
 163 spin_unlock_irqrestore(

 &sk−>receive_queue.lock,cpu_flags);

8

If the MSG_PEEK flag is not specified, skb_dequeue is called. If the queue is non−empty,
skb_dequeue will remove the first sk_buff from the list and return a pointer to it. Otherwise it will
return NULL. Queue management is not via standard Linux list structures and the received packet
queue is rooted at sk−>receive_queue which is an element of type sk_buff_head.

 164 } else
 165 skb = skb_dequeue(&sk−>receive_queue);

The skb_dequeue() function is defined in include/linux/skbuff.h. It calls __skb_dequeue after
obtaining the list’s associated lock.

 589 static inline struct sk_buff *skb_dequeue(struct
sk_buff_head *list)

 590 {
 591 long flags;
 592 struct sk_buff *result;
 593
 594 spin_lock_irqsave(&list−>lock, flags);
 595 result = __skb_dequeue(list);
 596 spin_unlock_irqrestore(&list−>lock, flags);
 597 return result;
 598 }

9

The __skb_dequeue() function does the work of actually removing an sk_buff from the receive
queue. Since the sk_buff_head structure starts with the same link pointers as an actual sk_buff
structure, it can masquerade as a list element as is done via the cast in line 564. In line 564 prev is
set to point to the sk_buff_head. Then in line 565, the local variable next receives the value of the
next pointer in the sk_buff_head. The test in line 567 checks to see if the next pointer still points
to the sk_buff_head. If so the list was empty. If not the first element is removed from the list and
its link fields are zeroed.

 560 static inline struct sk_buff *__skb_dequeue(struct
sk_buff_head *list)

 561 {
 562 struct sk_buff *next, *prev, *result;
 563
 564 prev = (struct sk_buff *) list;
 565 next = prev−>next;
 566 result = NULL;
 567 if (next != prev) {
 568 result = next;
 569 next = next−>next;
 570 list−>qlen−−;
 571 next−>prev = prev;
 572 prev−>next = next;
 573 result−>next = NULL;
 574 result−>prev = NULL;
 575 result−>list = NULL;
 576 }
 577 return result;
 578 }

10

On return to skb_recv_datagram(), if a pointer to an sk_buff is received, it is returned to
udp_recvmsg().

 167 if (skb)
 168 return skb;

If the time to wait is zero, return NULL.

 170 /* User doesn’t want to wait */
 171 error = −EAGAIN;
 172 if (!timeo)
 173 goto no_packet;

Otherwise, wait for data arrival.

 175 } while (wait_for_packet(sk, err, &timeo) == 0);
 176
 177 return NULL;
 178
 179 no_packet:
 180 *err = error;
 181 return NULL;
 182 }

The wait_for_packet() function is defined in net/core/datagram.c. For reasons not fully
understood at the moment it eschews the use of the kernel service routines designed to provide
sleep/wakeup services and implements them internally.

 61 static int wait_for_packet(struct sock * sk, int *err,
long *timeo_p)

 62 {
 63 int error;
 64
 65 DECLARE_WAITQUEUE(wait, current);

 144 #define DECLARE_WAITQUEUE(name, tsk) \
 145 wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)

The current process sets its state to TASK_INTERRUPTIBLE and adds itself to the queue of
waiting processes. A significant amount of additional processing occurs before the process
actually goes to sleep though. sk−>sleep is of type wait_queue_head_t.

 67 __set_current_state(TASK_INTERRUPTIBLE);
 68 add_wait_queue_exclusive(sk−>sleep, &wait);

11

The err flag of the struct sock is checked for any errors.

 70 /* Socket errors? */
 71 error = sock_error(sk);
 72 if (error)
 73 goto out_err;

The receive queue is tested for still empty. If not a jump is taken to the end of the function.

 75 if (!skb_queue_empty(&sk−>receive_queue))
 76 goto ready;

See if the shutdown flag of the sk (struct sock) has been set indicating that some manner of
receive close is in progress.

 78 /* Socket shut down? */
 79 if (sk−>shutdown & RCV_SHUTDOWN)
 80 goto out_noerr;

Since, a SOCK_DGRAM type socket is connectionless, we always get past this if−statement.
Recall that this function is __skb_dequeue() which can be used by protocols other than UDP.

 82 /* Sequenced packets can come disconnected.

If so we report the problem */
 83 error = −ENOTCONN;
 84 if (connection_based(sk) &&

!(sk−>state==TCP_ESTABLISHED
||sk−>state==TCP_LISTEN))

 85 goto out_err;

The connection_based() function is defined in net/core/datagram.c.

 51 static inline int connection_based(struct sock *sk)
 52 {
 53 return (sk−>type==SOCK_SEQPACKET ||

sk−>type==SOCK_STREAM);
 54 }

12

The signal_pending() function checks the sigpending flag of struct task_struct. If this flag is set,
an error is returned.

 87 /* handle signals */
 88 if (signal_pending(current))
 89 goto interrupted;

signal_pending is defined in include/linux/sched.h.

 632 static inline int signal_pending(struct task_struct *p)
 633 {
 634 return (p−>sigpending != 0);
 635 }

Finally schedule_timeout() is called to give up control to the scheduler. Control will not return
here until a packet is received, a timeout occurs, or a signal is received.

 91 *timeo_p = schedule_timeout(*timeo_p);

This is the standard wakeup action. Restore the task state and remove if from the wait queue.

 93 ready:
 94 current−>state = TASK_RUNNING;
 95 remove_wait_queue(sk−>sleep, &wait);
 96 return 0;

 98 interrupted:
 99 error = sock_intr_errno(*timeo_p);

sock_intr_errno is defined in include/net/sock.h.

 1256 /* Alas, with timeout socket operations are
not restartable. Compare this to poll().

 */
 1259 static inline int sock_intr_errno(long timeo)
 1260 {
 1261 return timeo == MAX_SCHEDULE_TIMEOUT ?

−ERESTARTSYS : −EINTR;
 1262 }

 100 out_err:
 101 *err = error;
 102 out:
 103 current−>state = TASK_RUNNING;
 104 remove_wait_queue(sk−>sleep, &wait);
 105 return error;
 106 out_noerr:
 107 *err = 0;
 108 error = 1;
 109 goto out;
 110 }

13

schedule_timeout is defined in kernel/sched.c.

 /*
 schedule_timeout − sleep until timeout
 @timeout: timeout value in jiffies

 Make the current task sleep until @timeout jiffies

have elapsed. The routine will return immediately
unless the current task state has been set (see
set_current_state()).

You can set the task state as follows −

%TASK_UNINTERRUPTIBLE − at least @timeout jiffies
are guaranteed to pass before the routine returns.
The routine will return 0

%TASK_INTERRUPTIBLE − the routine may return early
if a signal is delivered to the current task. In this
 case the remaining time in jiffies will be returned, or 0
if the timer expired in time

The current task state is guaranteed to be
TASK_RUNNING when this routine returns.

 Specifying a @timeout value of
MAX_SCHEDULE_TIMEOUT will schedule the CPU away
without a bound on the timeout. In this case the
return value will be %MAX_SCHEDULE_TIMEOUT.

In all cases the return value is guaranteed to be
non−negative.
*/

 410 signed long schedule_timeout(signed long timeout)
 411 {
 412 struct timer_list timer;
 413 unsigned long expire;
 414

14

The above comment clearly says that if timeout value is MAX_SCHEDULE_TIMEOUT,
the current process waits for data indefinitely. schedule is called to schedule any processes
contending for CPU.

 415 switch (timeout)
 416 {
 417 case MAX_SCHEDULE_TIMEOUT:
 425 schedule();
 426 goto out;
 427 default:
 428 /*

Another bit of PARANOID. Note that the retval
will be 0 since no piece of kernel is
supposed to do a check for a negative retval
of schedule_timeout() (since it should never
happens anyway). You just have the printk()
that will tell you if something is gone wrong
and where.

 434 */
 435 if (timeout < 0)
 436 {
 437 printk(KERN_ERR "schedule_timeout: wrong

timeout "
 438 "value %lx from %p\n",timeout,
 439 builtin_return_address(0));
 440 current−>state = TASK_RUNNING;
 441 goto out;
 442 }
 443 }

If a timeout value less than default max value was specified, a timer is initialized and added to list
of timers maintained by kernel and schedule() is invoked.

 445 expire = timeout + jiffies;
 446
 447 init_timer(&timer);
 448 timer.expires = expire;
 449 timer.data = (unsigned long) current;
 450 timer.function = process_timeout;
 451
 452 add_timer(&timer);
 453 schedule();
 454 del_timer_sync(&timer);

15

process_timeout() is defined in kernel/sched.c. When the above timer expires, this function wakes
up current process.

 377 static void process_timeout(unsigned long __data)
 378 {
 379 struct task_struct * p = (struct task_struct *)

__data;
 380
 381 wake_up_process(p);
 382 }

When an event wakes the current process, update time remaining to wait and return to
skb_recv_datagram to check if an sk_buff was received. If so, a pointer to it is returned to
udp_recvmsg. Otherwise, the process either goes to sleep again or returns a NULL value to
udp_recvmsg based on the time remaining to wait.

 456 timeout = expire − jiffies;
 457
 458 out:
 459 return timeout < 0 ? 0 : timeout;
 460 }

Back in udp_recvmsg a test is made to see if an sk_buff pointer was returned by
skb_recv_datagram() and if not a jump to an error exit pointe is made.

 644 if (!skb)
 645 goto out;

If a buffer pointer was returned it is necessary to copy the data back to user space and release the
buffer . Since skb−>len includes the length of the UDP header at this point (but no longer the
MAC or IP header) , copied denotes length of user data.

 647 copied = skb−>len − sizeof(struct udphdr);

If data to be returned to user exceeds size of buffer provided, adjust the length downward to fit and
set an appropriate flag to indicate that the message was truncated.

 648 if (copied > len) {
 649 copied = len;
 650 msg−>msg_flags |= MSG_TRUNC;
 651 }

16

As with send there are multiple copy mechanisms that depend upon the need to validate the UDP
checksum.

 653 if (skb−>ip_summed==CHECKSUM_UNNECESSARY) {

If check summing is not required, the skb_copy_datagram_iovec() copies the data to the user
space buffer described by the iov.

 654 err = skb_copy_datagram_iovec(skb,
sizeof(struct udphdr),
msg−>msg_iov, copied);

 656 } else if (msg−>msg_flags & MSG_TRUNC) {

If it was necessary to truncate the message and a checksum is required. It is first necessary to call
__udp_checksum_complete() to verify UDP checksum over the entire packet. In case of a
checksum error, the sk_buff is freed and an error returned. In case of success only the part of the
packet that will fit into the buffer provided is copied.

 657 if (__udp_checksum_complete(skb))
 658 goto csum_copy_err;

 659 err = skb_copy_datagram_iovec(skb,
sizeof(struct udphdr),msg−>msg_iov,

 660 copied);
 661 } else {

In the final case a checksum is required and the entire packet is to be copied. Here
skb_copy_and_csum_datagram_iovec() verifies checksum and copies data from sk buff to I/O
vector.

 662 err = skb_copy_and_csum_datagram_iovec
(skb, sizeof(struct udphdr),

msg−>msg_iov);
 663
 664 if (err == −EINVAL)
 665 goto csum_copy_err;
 666 }
 667
 668 if (err)
 669 goto out_free;

17

The sock_recv_timestamp() function records the time stamp, when the sk_buff was received.

 671 sock_recv_timestamp(msg, sk, skb);

sock_recv_timestamp() is defined in include/net/sock.h.

 1264 static __inline__ void
 1265 sock_recv_timestamp(struct msghdr *msg, struct sock

*sk, struct sk_buff *skb)
 1266 {

rcvtstamp is a flag of struct sock. In the case of recvfrom() there is no provision for control
messages and the put_cmsg() will do nothing.

 1267 if (sk−>rcvtstamp)
 1268 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP,

sizeof(skb−>stamp), &skb−>stamp);
 1269 else
 1270 sk−>stamp = skb−>stamp;
 1271 }

Assemble the sender address from elements of the sk_buff.

 673 /* Copy the address. */
 674 if (sin)
 675 {
 676 sin−>sin_family = AF_INET;
 677 sin−>sin_port = skb−>h.uh−>source;
 678 sin−>sin_addr.s_addr = skb−>nh.iph−>saddr;
 679 memset(sin−>sin_zero, 0, sizeof(sin−>sin_zero));
 680 }

Depending on control message flags specified, corresponding ancillary control data is collected by
ip_cmsg_recv. However, sys_recvfrom does not get any such data.

 681 if (sk−>protinfo.af_inet.cmsg_flags)
 682 ip_cmsg_recv(msg, skb);
 683 err = copied;
 684

Free the sk_buff() and return.

 685 out_free:
 686 skb_free_datagram(sk, skb);
 687 out:
 688 return err;
 689

18

In case of a check sum error, the sk_buff is also freed.

 690 csum_copy_err:
 691 UDP_INC_STATS_BH(UdpInErrors);
 692
 693 /* Clear queue. */
 694 if (flags & MSG_PEEK) {
 695 int clear = 0;
 696 spin_lock_irq(&sk−>receive_queue.lock);
 697 if (skb == skb_peek(&sk−>receive_queue)) {
 698 __skb_unlink(skb, &sk−>receive_queue);
 699 clear = 1;
 700 }
 701 spin_unlock_irq(&sk−>receive_queue.lock);
 702 if (clear)
 703 kfree_skb(skb);
 704 }
 705
 706 skb_free_datagram(sk, skb);
 707
 708 return −EAGAIN;
 709 }

19

Transfering data from an sk_buff to an I/O vector

This procedure appears (and is) far more complex in the worst case than is actually the case in
practice. The problem lies with the ‘‘unususual’’ implementation of the sk_buff. In the worst
case, a single packet could consist of the following:

− an instance of the struct skbuff buffer header.
− a kmalloc’d ‘‘data’’ area allocated to hold the headers of the packet.
− up to 6 unmapped single page structures called fragments holding packet data
− a pointer to an additional sk_buff which may contain all 4 of these elements!

This possibility leads to a recursive implementation of checksumming and data movement code.
Fortunately, in practice a UDP packet always consists of only:

− an instance of the struct skbuff buffer header.
− a kmalloc’d ‘‘data’’ area allocated holding both packet headers an data.

The ‘‘worst case’’ sk_buff structure is mapped by the struct skb_shared_info defined in
include/linux/skbuff.h. When used, this structure resides at the end of the kmalloc’d data area and
is pointed to by the end element of the struct sk_buff header.

 119 /* This data is invariant across clones and lives at
 120 * the end of the header data, ie. at skb−>end.
 121 */
 122 struct skb_shared_info {
 123 atomic_t dataref;
 124 unsigned int nr_frags;
 125 struct sk_buff *frag_list;
 126 skb_frag_t frags[MAX_SKB_FRAGS];
 127 };

Functions of structure elements:

frag_list may contain zero a pointer to the next sk_buff in the chain. When
is it used??

frags is a six element array of skb_frag_t type. These are the unmapped
single page entities.

nr_frags denotes number of elements of frags array in use.

20

 108 #define MAX_SKB_FRAGS 6
 109
 110 typedef struct skb_frag_struct skb_frag_t;
 111
 112 struct skb_frag_struct
 113 {
 114 struct page *page;
 115 __u16 page_offset;
 116 __u16 size;
 117 };

Functions of structure elements:

page Pointer to a struct page.
offset Offset in page from where data is stored.
size Size of data.

The buffer header of type struct sk_buff contains two members, namely len and data_len, used to
describe the length of the received packet. The skb−>len field denotes length of the amount of
data in the packet that remains to be processed. That is, it is initially set to the length of all headers
and application data. As headers are removed as the packet is passed up the stack, the value of
skb−>len is decremented by the length of each network header removed. The value of
skb−>data_len is the amount of data that is held in fragments and in chained sk_buffs. It is used by
TCP but appears to have no use in processing UDP packets.

21

The function skb_copy_datagram_iovec(), defined in net/core/datagram.c, is used to copy a UDP
datagram when checksumming is not required. In this case the value of offset is the size of the
UDP header and skb−>data_len is 0.

 204 int skb_copy_datagram_iovec(const struct sk_buff *skb,
int offset, struct iovec *to, int len)

 206 {
 207 int i, copy;

It is the case that skb−>len includes the kmalloc’d stuff but that skb−>datalen includes only that
which is in the appendicies. Thus start would be set here to the amount of data in the kmalloc’d
part which would be just what is needed!

 208 int start = skb−>len − skb−>data_len;

The comment is misleading and apparently reflects the philosophy that the kmalloc’d part of the
sk_buff structure is for storage of network header elements. What is actually happening in the
case of UDP is that memcpy_toiovec() is being passed a pointer to the start of the user data along
with the length of the user data. In the standard case (no fragments) the value of len will become 0
at line 216 and the function will return.

 210 /* Copy header. */
 211 if ((copy = start−offset) > 0) {
 212 if (copy > len)
 213 copy = len;
 214 if (memcpy_toiovec(to, skb−>data + offset, copy))
 215 goto fault;
 216 if ((len −= copy) == 0)
 217 return 0;
 218 offset += copy;
 219 }

22

The memcpy_to_iovec() function is defined in net/core/iovec.c. It copies kernel data into an I/O
vector. Note that as data is copied to the iovec, the len field of the element which is the recipient
is decremented and the base pointer is incremented. This strategy makes it possible, albeit
slightly inefficient, for callers that are passing multiple fragments of a packet to be copied to
always just pass the base address of the iovec. Elements that have been previously filled will just
be bypassed in the while loop because the if statement at line 88 will find that such elements have
iov_len equal to 0.

 82 int memcpy_toiovec(struct iovec *iov, unsigned char
*kdata, int len)

 83 {
 84 int err = −EFAULT;
 85
 86 while(len>0)
 87 {
 88 if(iov−>iov_len)
 89 {

min_t returns minimum of two arguments.

 90 int copy = min_t(unsigned int,
iov−>iov_len, len);

 91 if (copy_to_user(iov−>iov_base, kdata,
copy))

 92 goto out;
 93 kdata+=copy;

Update available buffer space and base pointer of I/O vector.

 94 len−=copy;
 95 iov−>iov_len−=copy;
 96 iov−>iov_base+=copy;
 97 }
 98 iov++;
 99 }
 100 err = 0;
 101 out:
 102 return err;
 103 }

23

If there do exist fragments skb_copy_datagram_iovec() will continue and copy data from page
fragments into the I/O vector.

 221 /* Copy paged appendix. Hmm... why does this
look so complicated? */

 222 for (i=0; i<skb_shinfo(skb)−>nr_frags; i++) {

skb_shinfo is defined in include/linux/skbuff.h. It simply returns a pointer to skb_shared_info
structure that is pointed to by skb−>end.

 247 /* Internal */
 248 #define skb_shinfo(SKB)

((struct skb_shared_info *)((SKB)−>end))

 223 int end;
 224
 225 BUG_TRAP(start <= offset+len);
 226

In the first iteration of this loop start contains the offset from the start of the packet data (including
UDP header) of the beginning of the paged appendix. Thus end is set to the offset of the 1st byte
beyond the data in the paged appendix and copy is set to the amount of data in this element of the
paged appendix.

 227 end = start + skb_shinfo(skb)−>frags[i].size;
 228 if ((copy = end−offset) > 0) {
 229 int err;
 230 u8 *vaddr;
 231 skb_frag_t *frag =

&skb_shinfo(skb)−>frags[i];
 232 struct page *page = frag−>page;
 233
 234 if (copy > len)
 235 copy = len;

Get logical address of page corresponding to page. Copy data from fragment into I/O vector
using memcpy_to_iovec.

 236 vaddr = kmap(page);
 237 err = memcpy_toiovec(to, vaddr +

frag−>page_offset +
offset−start, copy);

 239 kunmap(page);
 240 if (err)
 241 goto fault;
 242 if (!(len −= copy))
 243 return 0;
 244 offset += copy;
 245 }
 246 start = end;
 247 }

24

Finally, if there exist additional sk_buffs in the chain, the are processed via a recursive call to
skb_copy_datagram_iovec(). This incredible structure is actually a tree of general degree.

 249 if (skb_shinfo(skb)−>frag_list) {
 250 struct sk_buff *list;
 251
 252 for (list = skb_shinfo(skb)−>frag_list;

list; list=list−>next) {
 253 int end;
 254
 255 BUG_TRAP(start <= offset+len);
 256
 257 end = start + list−>len;
 258 if ((copy = end−offset) > 0) {
 259 if (copy > len)
 260 copy = len;
 261 if (skb_copy_datagram_iovec(list,

offset−start, to, copy))
 262 goto fault;

 263 if ((len −= copy) == 0)
 264 return 0;
 265 offset += copy;
 266 }
 267 start = end;
 268 }
 269 }
 270 if (len == 0)
 271 return 0;
 272
 273 fault:
 274 return −EFAULT;
 275 }

25

UDP checksum

The function __udp_checksum_complete() is defined in net/ipv4/udp.c and is used when a UDP
datagram must be truncated. Its mission is to make sure that the entire datagram passes the
checksum test. If so, then it is safe to return the truncated part to user space. It consists of call to
skb_checksum() followed by a call to csum_fold() which converts the 32 bit checksum to a proper
16 bit one.

 611 static __inline__ int __udp_checksum_complete(struct
sk_buff *skb)

 612 {
 613 return (unsigned short)csum_fold(skb_checksum(skb,

0, skb−>len, skb−>csum));
 614 }

skb_checksum is defined in net/core/skbuff.c. It computes checksum on data present in sk buff
using function csum_partial.

 998 /* Checksum skb data. */
 999
 1000 unsigned int skb_checksum(const struct sk_buff *skb,

int offset, int len, unsigned int csum)
 1001 {
 1002 int i, copy;
 1003 int start = skb−>len − skb−>data_len;
 1004 int pos = 0;

Compute a partial checksum, csum , on UDP header and any data past it. Note that argument
offset has the value zero.

 1006 /* Checksum header. */
 1007 if ((copy = start−offset) > 0) {
 1008 if (copy > len)
 1009 copy = len;
 1010 csum = csum_partial(skb−>data+offset, copy,

csum);

26

Prototype of function csum_partial is specified in include/asm−i386/checksum.h. The function is
defined in arch/i386/checksum.S. It is written in assembly language.

computes the checksum of a memory block at buff, length len,
and adds in "sum" (32−bit) returns a 32−bit number suitable
for feeding into itself or csum_tcpudp_magic this function
must be called with even lengths, except for the last
fragment, which may be odd it’s best to have buff aligned on
a 32−bit boundary

 17 asmlinkage unsigned int csum_partial(const unsigned

char * buff, int len, unsigned int sum);

 1011 if ((len −= copy) == 0)
 1012 return csum;
 1013 offset += copy;
 1014 pos = copy;
 1015 }

27

On data in each fragment, compute partial checksum, csum2, using csum_partial. Add the two
checksums, csum and csum2, using csum_block_add.

 1017 for (i=0; i<skb_shinfo(skb)−>nr_frags; i++) {
 1018 int end;
 1019
 1020 BUG_TRAP(start <= offset+len);
 1021
 1022 end = start + skb_shinfo(skb)−>frags[i].size;
 1023 if ((copy = end−offset) > 0) {
 1024 unsigned int csum2;
 1025 u8 *vaddr;
 1026 skb_frag_t *frag =

&skb_shinfo(skb)−>frags[i];
 1027
 1028 if (copy > len)
 1029 copy = len;
 1030 vaddr = kmap_skb_frag(frag);

 1031 csum2 = csum_partial(vaddr +
frag−>page_offset +

 1032 offset−start, copy, 0);
 1033 kunmap_skb_frag(vaddr);
 1034 csum = csum_block_add(csum, csum2, pos);
 1035 if (!(len −= copy))
 1036 return csum;
 1037 offset += copy;
 1038 pos += copy;
 1039 }
 1040 start = end;
 1041 }

csum_block_add is defined as an inline function in include/net/checksum.h. It performs an
adjustment to csum2, if csum1 is a partial checksum of an odd number of bytes of data. How
does this work?

 138 static inline unsigned int
 139 csum_block_add(unsigned int csum, unsigned int csum2,

int offset)
 140 {
 141 if (offset&1)
 142 csum2 = ((csum2&0xFF00FF)<<8)

+((csum2>>8)&0xFF00FF);
 143 return csum_add(csum, csum2);
 144 }

28

csum_add is defined as below. It combines two partial checksums.

 127 static inline unsigned int csum_add(unsigned int csum,
unsigned int addend)

 128 {
 129 csum += addend;
 130 return csum + (csum < addend);
 131 }

On data present in each sk_ buff on fragment list, compute partial checksum, csum2, using
csum_partial. Add the two checksums as done earlier.

 1043 if (skb_shinfo(skb)−>frag_list) {
 1044 struct sk_buff *list;
 1045
 1046 for (list = skb_shinfo(skb)−>frag_list; list;

list=list−>next) {
 1047 int end;
 1048
 1049 BUG_TRAP(start <= offset+len);

 1051 end = start + list−>len;
 1052 if ((copy = end−offset) > 0) {
 1053 unsigned int csum2;
 1054 if (copy > len)
 1055 copy = len;
 1056 csum2 = skb_checksum(list, offset−

start, copy, 0);
 1057 csum = csum_block_add(csum, csum2,

pos);
 1058 if ((len −= copy) == 0)
 1059 return csum;
 1060 offset += copy;
 1061 pos += copy;
 1062 }
 1063 start = end;
 1064 }
 1065 }
 1066 if (len == 0)
 1067 return csum;
 1068
 1069 BUG();
 1070 return csum;
 1071 }

29

csum_fold is defined as below. It folds a 32−bit checksum to a 16−bit value. How does this work?

 99 /*
 100 * Fold a partial checksum
 101 */
 102
 103 static inline unsigned int csum_fold(unsigned int sum)
 104 {
 105 asm__("
 106 addl %1, %0
 107 adcl $0xffff, %0"
 108 "
 109 : "=r" (sum)
 110 : "r" (sum << 16), "" (sum & 0xffff0000)
 111);
 112 return (~sum) >> 16;
 113 }

30

skb_copy_and_csum_datagram_iovec is defined in net/core/datagram.c. It gets called when
checksum is necessary and message has not been truncated.

 370 int skb_copy_and_csum_datagram_iovec(const struct
sk_buff *skb, int hlen, struct iovec *iov)

 371 {
 372 unsigned int csum;
 373 int chunk = skb−>len − hlen;

 375 /* Skip filled elements. Pretty silly, look at

memcpy_toiovec, though 8) */
 376 while (iov−>iov_len == 0)
 377 iov++;

 379 if (iov−>iov_len < chunk) {

We have covered this case, where the size of specified buffer is less than available data.

 380 if ((unsigned short)csum_fold(skb_checksum
(skb, 0, chunk+hlen, skb−>csum)))

 381 goto csum_error;
 382 if (skb_copy_datagram_iovec(skb, hlen, iov,

chunk))
 383 goto fault;
 384 } else {

Obtain checksum value of UDP header. skb_copy_and_csum_datagram gets called which
performs both checksumming and copy of data.

 385 csum = csum_partial(skb−>data, hlen,
skb−>csum);

 386 if (skb_copy_and_csum_datagram(skb, hlen,
iov−>iov_base, chunk, &csum))

 387 goto fault;
 388 if ((unsigned short)csum_fold(csum))
 389 goto csum_error;
 390 iov−>iov_len −= chunk;
 391 iov−>iov_base += chunk;
 392 }
 393 return 0;
 394
 395 csum_error:
 396 return −EINVAL;
 397
 398 fault:
 399 return −EFAULT;
 400 }

31

skb_copy_and_csum_datagram is defined in net/core/datagram.c.

 277 int skb_copy_and_csum_datagram(const struct sk_buff *skb,
int offset, u8 *to, int len, unsigned int *csump)

 278 {
 279 int i, copy;
 280 int start = skb−>len − skb−>data_len;
 281 int pos = 0;
 282
 283 /* Copy header. */
 284 if ((copy = start−offset) > 0) {
 285 int err = 0;
 286 if (copy > len)
 287 copy = len;
 288 *csump = csum_and_copy_to_user(skb−>data

offset, to, copy, *csump,&err);
 289 if (err)
 290 goto fault;
 291 if ((len −= copy) == 0)
 292 return 0;
 293 offset += copy;
 294 to += copy;
 295 pos = copy;
 296 }

csum_and_copy_to_user is defined in include/asm−i386/checksum.h.

 181 /*
 182 * Copy and checksum to user
 183 */
 184 #define HAVE_CSUM_COPY_USER
 185 static __inline__ unsigned int csum_and_copy_to_user

(const char *src, char *dst, int len, int sum,
int *err_ptr)

 187 {
 188 if (access_ok(VERIFY_WRITE, dst, len))
 189 return csum_partial_copy_generic(src, dst,

len, sum, NULL, err_ptr);
 190
 191 if (len)
 192 *err_ptr = −EFAULT;
 193
 194 return −1; /* invalid checksum */
 195 }

32

Prototype of csum_partial_copy_generic is defined in include/asm−i386/checksum.h.

/*
 the same as csum_partial, but copies from src

while it checksums, and handles user−space pointer
exceptions correctly, when needed.

here even more important to align src and dst on a
32−bit (or even better 64−bit) boundary
*/

27 asmlinkage unsigned int csum_partial_copy_generic(
const char *src, char *dst, int len, int sum,

 int *src_err_ptr, int *dst_err_ptr);

On return to skb_copy_and_csum_datagram repeat for of each fragment.

 298 for (i=0; i<skb_shinfo(skb)−>nr_frags; i++) {
 299 int end;
 300
 301 BUG_TRAP(start <= offset+len);
 302
 303 end = start + skb_shinfo(skb)−>frags[i].size;
 304 if ((copy = end−offset) > 0) {
 305 unsigned int csum2;
 306 int err = 0;
 307 u8 *vaddr;
 308 skb_frag_t *frag =

&skb_shinfo(skb)−>frags[i];
 309 struct page *page = frag−>page;
 310
 311 if (copy > len)
 312 copy = len;
 313 vaddr = kmap(page);
 314 csum2 = csum_and_copy_to_user(vaddr +

frag−>page_offset +
 315 offset−start, to, copy, 0,

&err);
 316 kunmap(page);
 317 if (err)
 318 goto fault;
 319 *csump = csum_block_add(*csump, csum2,

pos);
 320 if (!(len −= copy))
 321 return 0;
 322 offset += copy;
 323 to += copy;
 324 pos += copy;
 325 }
 326 start = end;
 327 }

33

And then on data present in each sk buff on fragment list.

 329 if (skb_shinfo(skb)−>frag_list) {
 330 struct sk_buff *list;
 331
 332 for (list = skb_shinfo(skb)−>frag_list; list;

list=list−>next) {
 333 int end;
 334
 335 BUG_TRAP(start <= offset+len);
 336
 337 end = start + list−>len;
 338 if ((copy = end−offset) > 0) {
 339 unsigned int csum2 = 0;
 340 if (copy > len)
 341 copy = len;
 342 if (skb_copy_and_csum_datagram

(list, offset−start, to,
copy, &csum2))

 343 goto fault;
 344 *csump = csum_block_add(*csump,

csum2, pos);
 345 if ((len −= copy) == 0)
 346 return 0;
 347 offset += copy;
 348 to += copy;
 349 pos += copy;
 350 }
 351 start = end;
 352 }
 353 }
 354 if (len == 0)
 355 return 0;
 356
 357 fault:
 358 return −EFAULT;
 359 }

34

Socket control messages

scm_rcv is defined in include/net/scm.h. It is called by sock_recvmsg after the return from the call
to inet_recvmsg().

 45 static __inline__ void scm_recv(struct socket *sock,
struct msghdr *msg, struct scm_cookie *scm, int
flags)

 47 {
 48 if (!msg−>msg_control)
 49 {

Since no control buffer was specified by sys_recvfrom, scm_destroy() is called. As shown below
the call is a no−op here because scm−>fpl is NULL. The MSG_CTRUNC flag indicates that
control data was discarded.

 50 if (sock−>passcred || scm−>fp)
 51 msg−>msg_flags |= MSG_CTRUNC;
 52 scm_destroy(scm);
 53 return;
 54 }

Because of the return on line 53, control can’t possibly reach this point when called by recvfrom().
However, other callers might pass a msg_control pointer. In that case, if the passcred flag is set,
any socket control data is copied into msg control buffer.

 56 if (sock−>passcred)
 57 put_cmsg(msg, SOL_SOCKET, SCM_CREDENTIALS,

sizeof(scm−>creds), &scm−>creds);
 59 if (!scm−>fp)
 60 return;

Any passed file descriptors are freed by scm_detach_fds.

 62 scm_detach_fds(msg, scm);
 63 }

35

The scm_destroy function is a wrapper for __scm_destroy.

 97 void __scm_destroy(struct scm_cookie *scm)
 98 {
 99 struct scm_fp_list *fpl = scm−>fp;
 100 int i;
 101
 102 if (fpl) {
 103 scm−>fp = NULL;
 104 for (i=fpl−>count−1; i>=0; i−−)
 105 fput(fpl−>fp[i]);
 106 kfree(fpl);
 107 }
 108 }

36

